Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 2(3): 260-71, 2014 May.
Article in English | MEDLINE | ID: mdl-24936296

ABSTRACT

The physical, biochemical, and immunological characteristics of plant allergens have been widely studied, but no definite conclusion has been reached about what actually makes a protein an allergen. In this sense, N-glycosylation is an exclusive characteristic of plant allergens not present in mammals and it could be implied in allergenic sensitization. With this aim, we evaluated and compared the allergenic activity of the protein fraction and the N-glycan fraction of the thaumatin-like protein and the main kiwi allergen, Act d 2. The natural allergen, Act d 2, was deglycosylated by trifluoromethanesulfonic acid treatment; the N-glycan fraction was obtained by extended treatment with proteinase K. N-glycan- and protein- fractions were recognized by specific IgE of kiwi-allergic patients. By contrast, the sugar moiety showed a reduced capacity to activate basophils and T cells, but not dendritic cells derived from patients' monocytes. Related to this, the production of cytokines such as IL6 and IL10 was increased by the incubation of dendritic cells with sugar moiety. Thus, the sugar moiety plays a significant role in sensitization, inducing the activation of antigen-presenting cells, but it is the protein fraction that is responsible for the allergic reactions.

2.
J Allergy Clin Immunol ; 117(6): 1423-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16751008

ABSTRACT

BACKGROUND: Food IgE-mediated allergy to members of the Brassicaceae family has been increasingly reported. OBJECTIVE: To characterize cabbage-Brassica oleracea var capitata-allergy and its major allergens. METHODS: A prospective study was performed, recruiting 17 patients allergic to cabbage, and control subjects. Skin prick tests and double-blind placebo-controlled food challenges were performed. A major allergen was isolated from cabbage by RP-HPLC and characterized by N-terminal amino acid sequencing and matrix-assisted laser desorption/ionization mass spectrometry analysis. Specific IgE determinations, IgE immunoblots, and CAP-inhibition assays were also performed. RESULTS: Skin prick test and specific IgE were positive to cabbage in all patients. Five of them referred anaphylactic reactions when eating cabbage, and in another 5 patients, cabbage allergy was further confirmed by double-blind placebo-controlled food challenge. Most of them showed associated sensitizations to mugwort pollen, mustard, and peach. A 9-kd cabbage IgE-binding protein, Bra o 3, was identified as a lipid transfer protein (LTP) with 50% of identity to peach LTP Pru p 3. Skin prick test with Bra o 3 showed positive results in 12 of 14 cases (86%). On CAP inhibition assays, Bra o 3 managed to inhibit significantly the IgE binding to cabbage, mugwort pollen, and peach. Both Bra o 3 and Pru p 3 were recognized by IgE from the patients' sera. CONCLUSION: Bra o 3, a cabbage LTP, is a major allergen in this food, cross-reacting with mugwort pollen and with other plant foods, such as peach. CLINICAL IMPLICATIONS: Cabbage IgE-mediated allergy is a potentially severe condition that can present with other plant food and pollen allergies.


Subject(s)
Allergens/immunology , Brassica/immunology , Carrier Proteins/immunology , Food Hypersensitivity/immunology , Plant Proteins/immunology , Pollen/immunology , Adolescent , Adult , Allergens/metabolism , Antigens, Plant , Carrier Proteins/metabolism , Cross Reactions , Double-Blind Method , Female , Food Hypersensitivity/metabolism , Humans , Immunoglobulin E/metabolism , Male , Plant Proteins/metabolism , Pollen/metabolism , Prospective Studies , Protein Binding/immunology , Skin Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...