Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 370(1967): 2321-47, 2012 May 28.
Article in English | MEDLINE | ID: mdl-22509061

ABSTRACT

Bioadhesion refers to the phenomenon where natural and synthetic materials adhere to biological surfaces. An understanding of the fundamental mechanisms that govern bioadhesion is of great interest for various researchers who aim to develop new biomaterials, therapies and technological applications such as biosensors. This review paper will first describe various examples of the manifestation of bioadhesion along with the underlying mechanisms. This will be followed by a discussion of some of the methods for the optimization of bioadhesion. Finally, nanoscale and macroscale characterization techniques for the efficacy of bioadhesion and the analysis of failure surfaces are described.


Subject(s)
Biocompatible Materials , Cell Adhesion , Biofilms , Humans , Surface Properties
2.
Philos Trans A Math Phys Eng Sci ; 370(1967): 2348-80, 2012 May 28.
Article in English | MEDLINE | ID: mdl-22509062

ABSTRACT

The profile and conformation of proteins that are adsorbed onto a polymeric biomaterial surface have a profound effect on its in vivo performance. Cells and tissue recognize the protein layer rather than directly interact with the surface. The chemistry and morphology of a polymer surface will govern the protein behaviour. So, by controlling the polymer surface, the biocompatibility can be regulated. Nanoscale surface features are known to affect the protein behaviour, and in this overview the nanostructure of self-assembled block copolymers will be harnessed to control protein behaviour. The nanostructure of a block copolymer can be controlled by manipulating the chemistry and arrangement of the blocks. Random, A-B and A-B-A block copolymers composed of methyl methacrylate copolymerized with either acrylic acid or 2-hydroxyethyl methacrylate will be explored. Using atomic force microscopy (AFM), the surface morphology of these block copolymers will be characterized. Further, AFM tips functionalized with proteins will measure the adhesion of that particular protein to polymer surfaces. In this manner, the influence of block copolymer morphology on protein adhesion can be measured. AFM tips functionalized with antibodies to fibronectin will determine how the surfaces will affect the conformation of fibronectin, an important parameter in evaluating surface biocompatibility.


Subject(s)
Nanostructures , Polymers/chemistry , Proteins/chemistry , Biocompatible Materials , Microscopy, Atomic Force , Protein Binding
3.
J Biomed Mater Res A ; 100(1): 18-25, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21972205

ABSTRACT

Conformational changes of fibronectin (Fn) deposited on poly(methyl methacrylate) and poly(acrylic acid) block copolymers with identical chemical compositions were detected using an antibody-functionalized atomic force microscope (AFM) tip. Based on the antibody-protein adhesive force maps and phase imaging, it was found that the nanomorphology of the triblock copolymer is conducive to the exposure of the arginine-glycine-aspartic acid (RGD) groups in Fn. For the first time, X-ray photoelectron spectroscopy was used to elucidate surface chemical composition and confirm AFM results. The findings demonstrate that block copolymer nanomorphology can be used to regulate protein conformation and potentially cellular response.


Subject(s)
Antibodies/immunology , Fibronectins/chemistry , Microscopy, Atomic Force/instrumentation , Polymethyl Methacrylate/chemistry , Serum Albumin, Bovine/chemistry , Adhesiveness , Animals , Epitopes/immunology , Photoelectron Spectroscopy , Surface Properties , Thermodynamics
4.
J R Soc Interface ; 8(58): 630-40, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21147831

ABSTRACT

The adhesive interactions of block copolymers composed of poly(methyl methacrylate) (PMMA)/poly(acrylic acid) (PAA) and poly(methyl methacrylate)/poly(2-hydroxyethyl methacrylate) (PHEMA) with the proteins fibronectin, bovine serum albumin and collagen were studied by atomic force microscopy. Adhesion experiments were performed both at physiological pH and at a slightly more acidic condition (pH 6.2) to model polymer-protein interactions under inflammatory or infectious conditions. The PMMA/PAA block copolymers were found to be more sensitive to the buffer environment than PMMA/PHEMA owing to electrostatic interactions between the ionized acrylate groups and the proteins. It was found that random, diblock and triblock copolymers exhibit distinct adhesion profiles although their chemical compositions are identical. This implies that biomaterial nanomorphology can be used to control protein-polymer interactions and potentially cell adhesion.


Subject(s)
Polymers/chemistry , Surface Properties , Acrylic Resins/chemistry , Adhesiveness , Animals , Biocompatible Materials/chemistry , Cattle , Cell Adhesion , Collagen/chemistry , Fibronectins/chemistry , Hydrogen-Ion Concentration , Microscopy, Atomic Force/methods , Models, Biological , Models, Chemical , Nanotechnology/methods , Polyhydroxyethyl Methacrylate/chemistry , Polymethacrylic Acids/chemistry , Proteins/chemistry , Serum Albumin/chemistry , Wettability
5.
Ultramicroscopy ; 110(6): 639-49, 2010 May.
Article in English | MEDLINE | ID: mdl-20207483

ABSTRACT

Biocompatible polymers are known to act as scaffolds for the regeneration and growth of bone. Block copolymers are of interest as scaffold materials because a number of the blocks are biocompatible, and their nanostructure is easily tunable with synthetic techniques. In this paper, we report the synthesis of a novel class of biomaterials from block copolymers containing a hydrophobic block of methyl methacrylate and a hydrophilic block of either acrylic acid, dimethyl acrylamide, or 2-hydroxyethyl methacrylate. The block copolymers were synthesized using a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. Since the surface morphology is critical for successful cell growth, atomic force microscopy (AFM) studies were conducted for selected block copolymers. The topography, phase angle and friction maps were obtained in dry and physiological buffer environments to study the morphology. Results of AFM imaging identified the presence of polymer domains corresponding to the copolymer components. The distribution of nanoscale features in these block copolymers is comparable to those found on other surfaces that exhibit favorable cell adhesion and growth. In physiological buffer medium, the hydrophilic component of the block copolymer (acrylic acid or hydroxyethyl methacrylate) appears to be present in greater amounts on the surface as a consequence of water absorption and swelling.

6.
Ultramicroscopy ; 109(8): 980-90, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19345498

ABSTRACT

Two classes of novel lubricants, perfluoropolyethers (PFPE) and ionic liquids (ILs), were deposited on metal film magnetic tapes. The adhesive force and coefficient of friction of lubricated and unlubricated tapes were investigated at the nanoscale with an atomic force microscope (AFM) as a function of various humidity and temperature conditions. Microscale tests with a ball-on-flat tribometer were also performed in order to study the length-scale effects on friction. Wear at ultralow loads was simulated and the lubricant removal mechanism was investigated by monitoring the friction force, surface potential and contact resistance with the AFM. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) experiments were conducted to determine the chemical species that affect intermolecular bonding and as an aid in interpreting how the lubricant film tribological properties vary with the environmental conditions. Z-TETRAOL, one of the PFPEs, was found to exhibit the lowest adhesion and friction among the lubricant films studied. The ionic liquid 1,1'-(pentane-1,5-diyl)bis(3-hydroxyethyl-1H-imidazolium-1-yl) di[bis(trifluoromethanesulfonyl)imide)] exhibited comparable nanotribological properties with the PFPEs. This is attributed to the presence of hydroxyl groups at its chain ends, which can hydrogen bond with the surface similar to PFPEs.

7.
J Colloid Interface Sci ; 317(1): 275-87, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17936778

ABSTRACT

Ionic liquids (ILs) are considered as lubricants for micro/nanoelectromechanical systems (MEMS/NEMS) due to their excellent thermal and electrical conductivity. So far, only macroscale friction and wear tests have been conducted on these materials. Evaluating the nanoscale tribological performance of ILs when applied as a few nanometers-thick film on a substrate is a crucial step to understand how these novel materials can efficiently lubricate MEMS/NEMS devices. To this end, the adhesion, friction and wear properties of two ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and 1-butyl-3-methylimidazolium octyl sulfate (BMIM-OctSO4), applied on Si(100), are investigated for the first time using atomic force microscopy (AFM). Data is compared to the perfluoropolyether lubricant Z-TETRAOL, which has high thermal stability and extremely low vapor pressure. Wear at ultralow loads was simulated and the lubricant removal mechanism was investigated using AFM-based surface potential and contact resistance techniques. Thermally treated coatings containing a mobile lubricant fraction (i.e., partially bonded) were better able to protect the Si substrate from wear compared to the fully bonded coatings, and this enhanced protection is attributed to lubricant replenishment.


Subject(s)
Imidazoles/chemistry , Ionic Liquids/chemistry , Membranes, Artificial , Microscopy, Atomic Force/instrumentation , Microscopy, Atomic Force/methods , Nanotechnology/methods , Octanes/chemistry , Electrochemistry , Molecular Structure , Particle Size , Surface Properties
8.
Nanotechnology ; 19(10): 105705, 2008 Mar 12.
Article in English | MEDLINE | ID: mdl-21817713

ABSTRACT

Probe-based data recording is being developed as an alternative technology for ultrahigh areal density. In ferroelectric data storage, a conductive atomic force microscope (AFM) probe with a noble metal coating is placed in contact on lead zirconate titanate (PZT) film, which serves as the ferroelectric material. A crucial mechanical reliability concern is tip wear during contact of the ferroelectric material with the probe. To achieve high wear resistance, the mechanical properties (such as elastic modulus and hardness) of the metal-coated probe should be high. Nanoindentation experiments were performed in order to evaluate the mechanical properties of four commercial noble metal coatings, namely, Pt, Pt-Ni, Au-Ni and Pt-Ir, deposited on AFM probes. The effective hardness and elastic modulus were evaluated, using a contact mechanics model that accounts for the effect of the underlying silicon substrate. The Pt-Ir coating was found to exhibit the highest hardness, highest elastic modulus and lowest creep resistance. Nanoscratch studies reveal that the noble metal coatings are removed primarily by plastic deformation. The Pt-Ir and Pt coatings show the highest and lowest scratch resistance, respectively, which is consistent with results obtained from wear tests of the noble metal-coated AFM probes on a PZT surface.

9.
Nanotechnology ; 19(31): 315710, 2008 Aug 06.
Article in English | MEDLINE | ID: mdl-21828802

ABSTRACT

Future micro/nanodevices will contain very small features such that liquid lubrication is not practical and inherent lubricity is needed. In this study, a nanoscale friction investigation was carried out during the manipulation of Au and SiO(2) nanoparticles on silicon using atomic force microscopy (AFM). Nanoparticle sliding was characterized by quantifying the lateral force associated with the AFM tip twisting as it hits the particle edge. The friction force varies with particle area and humidity, illustrating how meniscus forces on nanoparticles affect friction. A large tip slid on the nanoparticle-coated surface exhibited friction reduction due to nanoparticle sliding and contact area reduction.

10.
J Colloid Interface Sci ; 315(1): 261-9, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17631305

ABSTRACT

The wear of perfluoropolyether (PFPE) lubricants applied on Si(100) and an Au film on Si(100) substrate at ultralow loads was investigated by using atomic force microscopy (AFM)-based surface potential and resistance measurements. Surface potential data is used in detecting lubricant removal and the initiation of wear on the silicon substrate. The surface potential change is attributed to the change in the work function of the silicon after wear, and electrostatic charge build-up of debris in the lubricant. It was found that coatings that are partially bonded, i.e., containing a mobile lubricant fraction, were better able to protect the silicon substrate from wear compared to the fully bonded coating. This enhanced protection is attributed to a lubricant replenishment mechanism. However, an untreated lubricant coating exhibited considerable wear as it contains a smaller amount of lubricant bonded to the substrate relative to the partially bonded and fully bonded coatings. A sample subjected to shear is shown to have improved wear resistance, and this enhancement is attributed to chain reorientation and alignment of the lubricant molecules. The detection of wear of PFPE lubricants on Au by an AFM-based resistance measurement method is demonstrated for the first time. This technique provides complementary information to surface potential data in detecting substrate exposure after wear and is a promising method for studying the wear of conducting films.

SELECTION OF CITATIONS
SEARCH DETAIL
...