Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 37(9): 1237-1250, 2018 03.
Article in English | MEDLINE | ID: mdl-29242606

ABSTRACT

Cancer research is increasingly dependent of patient-derived xenograft model (PDX). However, a major point of concern regarding the PDX model remains the replacement of the human stroma with murine counterpart. In the present work we aimed at clarifying the significance of the human-to-murine stromal replacement for the fidelity of colorectal cancer (CRC) and liver metastasis (CRC-LM) PDX model. We have conducted a comparative metabolic analysis between 6 patient tumors and corresponding PDX across 4 generations. Metabolic signatures of cancer cells and stroma were measured separately by MALDI-imaging, while metabolite changes in entire tumors were quantified using mass spectrometry approach. Measurement of glucose metabolism was also conducted in vivo using [18F]-fluorodeoxyglucose (FDG) and positron emission tomography (PET). In CRC/CRC-LM PDX model, human stroma was entirely replaced at the second generation. Despite this change, MALDI-imaging demonstrated that the metabolic profiles of both stromal and cancer cells remained stable for at least four generations in comparison to the original patient material. On the tumor level, profiles of 86 water-soluble metabolites as well as 93 lipid mediators underlined the functional stability of the PDX model. In vivo PET measurement of glucose uptake (reflecting tumor glucose metabolism) supported the ex vivo observations. Our data show for the first time that CRC/CRC-LM PDX model maintains the functional stability at the metabolic level despite the early replacement of the human stroma by murine cells. The findings demonstrate that human cancer cells actively educate murine stromal cells during PDX development to adopt the human-like phenotype.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Colorectal Neoplasms/metabolism , Disease Models, Animal , Glucose/metabolism , Liver Neoplasms/metabolism , Metabolome , Stromal Cells/metabolism , Animals , Cancer-Associated Fibroblasts/pathology , Cohort Studies , Colorectal Neoplasms/pathology , Female , Humans , Liver Neoplasms/secondary , Male , Mice , Mice, Inbred NOD , Mice, SCID , Phenotype , Stromal Cells/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
PLoS Med ; 12(9): e1001871, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26327350

ABSTRACT

BACKGROUND: Breast cancer is a leading malignancy affecting the female population worldwide. Most morbidity is caused by metastases that remain incurable to date. TGF-ß1 has been identified as a key driving force behind metastatic breast cancer, with promising therapeutic implications. METHODS AND FINDINGS: Employing immunohistochemistry (IHC) analysis, we report, to our knowledge for the first time, that asporin is overexpressed in the stroma of most human breast cancers and is not expressed in normal breast tissue. In vitro, asporin is secreted by breast fibroblasts upon exposure to conditioned medium from some but not all human breast cancer cells. While hormone receptor (HR) positive cells cause strong asporin expression, triple-negative breast cancer (TNBC) cells suppress it. Further, our findings show that soluble IL-1ß, secreted by TNBC cells, is responsible for inhibiting asporin in normal and cancer-associated fibroblasts. Using recombinant protein, as well as a synthetic peptide fragment, we demonstrate the ability of asporin to inhibit TGF-ß1-mediated SMAD2 phosphorylation, epithelial to mesenchymal transition, and stemness in breast cancer cells. In two in vivo murine models of TNBC, we observed that tumors expressing asporin exhibit significantly reduced growth (2-fold; p = 0.01) and metastatic properties (3-fold; p = 0.045). A retrospective IHC study performed on human breast carcinoma (n = 180) demonstrates that asporin expression is lowest in TNBC and HER2+ tumors, while HR+ tumors have significantly higher asporin expression (4-fold; p = 0.001). Assessment of asporin expression and patient outcome (n = 60; 10-y follow-up) shows that low protein levels in the primary breast lesion significantly delineate patients with bad outcome regardless of the tumor HR status (area under the curve = 0.87; 95% CI 0.78-0.96; p = 0.0001). Survival analysis, based on gene expression (n = 375; 25-y follow-up), confirmed that low asporin levels are associated with a reduced likelihood of survival (hazard ratio = 0.58; 95% CI 0.37-0.91; p = 0.017). Although these data highlight the potential of asporin to serve as a prognostic marker, confirmation of the clinical value would require a prospective study on a much larger patient cohort. CONCLUSIONS: Our data show that asporin is a stroma-derived inhibitor of TGF-ß1 and a tumor suppressor in breast cancer. High asporin expression is significantly associated with less aggressive tumors, stratifying patients according to the clinical outcome. Future pre-clinical studies should consider options for increasing asporin expression in TNBC as a promising strategy for targeted therapy.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/pharmacology , Animals , Biomarkers, Tumor/metabolism , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Female , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Interleukin-1beta/pharmacology , Mice , Middle Aged , Prognosis , Real-Time Polymerase Chain Reaction , Retrospective Studies , Survival Analysis , Transforming Growth Factor beta/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...