Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 188(2): 261-275, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35708658

ABSTRACT

Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) have been investigated for biomedical applications, including novel contrast agents, magnetic tracers for tumor imaging, targeted drug delivery vehicles, and magneto-mechanical actuators for hyperthermia and thrombolysis. Despite significant progress, recent clinical reports have raised concerns regarding USPION safety related to endothelial cell dysfunction; however, there is limited information on factors contributing to these clinical responses. The influence of USPION surface chemistry on nanoparticle interactions with proteins may impact endothelial cell function leading to adverse responses. Therefore, the goal of this study was to assess the effects of carboxyl-functionalized USPION (CU) or amine-functionalized USPION (AU) (approximately 30 nm diameter) on biological responses in human coronary artery endothelial cells. Increased protein adsorption was observed for AU compared with CU after exposure to serum proteins. Exposure to CU, but not AU, resulted in a concentration-dependent decrease in cell viability and perinuclear accumulation inside cytoplasmic vesicles. Internalization of CU was correlated with endothelial cell functional changes under non-cytotoxic conditions, as evidenced by a marked decreased expression of endothelial-specific adhesion proteins (eg, vascular endothelial-cadherin and platelet endothelial cell adhesion molecule-1) and increased endothelial permeability. Evaluation of downstream signaling indicated endothelial permeability is associated with actin cytoskeleton remodeling, possibly elicited by intracellular events involving reactive oxygen species, calcium ions, and the nanoparticle cellular uptake pathway. This study demonstrated that USPION surface chemistry significantly impacts protein adsorption and endothelial cell uptake, viability, and barrier function. This information will advance the current toxicological profile of USPION and improve development, safety assessment, and clinical outcomes of USPION-enabled medical products.


Subject(s)
Nanoparticles , Protein Corona , Humans , Endothelial Cells/metabolism , Ferric Compounds/metabolism , Magnetic Iron Oxide Nanoparticles , Protein Corona/metabolism
2.
J Appl Toxicol ; 40(7): 918-930, 2020 07.
Article in English | MEDLINE | ID: mdl-32080871

ABSTRACT

Ultrasmall superparamagnetic iron oxide nanoparticles (USPION) possess reactive surfaces, are metabolized and exhibit unique magnetic properties. These properties are desirable for designing novel theranostic biomedical products; however, toxicity mechanisms of USPION are not completely elucidated. The goal of this study was to investigate cell interactions (uptake and cytotoxicity) of USPION using human coronary artery endothelial cells as a vascular cell model. Polyvinylpirrolidone-coated USPION were characterized: average diameter 17 nm (transmission electron microscopy [TEM]), average hydrodynamic diameter 44 nm (dynamic light scattering) and zeta potential -38.75 mV. Cells were exposed to 0 (control), 25, 50, 100 or 200 µg/mL USPION. Concentration- and time-dependent cytotoxicity were observed after 3-6 hours through 24 hours of exposure using Alamar Blue and Real-Time Cell Electronic Sensing assays. Cell uptake was evaluated by imaging using live-dead confocal microscopy, actin and nuclear fluorescent staining, and TEM. Phase-contrast, confocal microscopy, and TEM imaging showed significant USPION internalization as early as 3 hours after exposure to 25 µg/mL. TEM imaging demonstrated particle internalization in secondary lysosomes with perinuclear localization. Three orthogonal assays were conducted to assess apoptosis. TUNEL staining demonstrated a marked increase in fragmented DNA, a response pathognomonic of apoptosis, after a 4-hour exposure. Cells subjected to agarose gel electrophoresis exhibited degraded DNA 3 hours after exposure. Caspase-3/7 activity increased after a 3-hour exposure. USPION uptake resulted in cytotoxicity involving apoptosis and these results contribute to further mechanistic understanding of the USPION toxicity in vitro in cardiovascular endothelial cells.


Subject(s)
Apoptosis/drug effects , Biological Transport/drug effects , Cells, Cultured/drug effects , Coronary Vessels/drug effects , Cytotoxins/adverse effects , Endothelial Cells/drug effects , Magnetic Iron Oxide Nanoparticles/toxicity , Humans
3.
Soft Matter ; 11(37): 7296-307, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26274373

ABSTRACT

We have contrasted the behavior of nanoparticles formed by the self-assembly of polymers based on poly(ethylene glycol) (PEG) and poly(D,L-lactide), with linear, linear-dendritic and bottle-brush architectures in biologically relevant media. Polymer PEG content ranged between 14% and 46% w/w, and self-assembly was triggered by a rapid and large change in solvent quality inside a four-stream vortex mixer. We examined nanoparticle interaction with human serum albumin (HSA), and solute release in the presence of fetal bovine serum. Dynamic light scattering data showed that PEG surface brushes of all nanoparticles provided effective steric stabilization, thus limiting their interaction with human serum albumin. Calorimetric experiments revealed that nanoparticle-HSA interaction was relatively weak and enthalpically driven, whereas dynamic light scattering results of incubated nanoparticles showed the absence of larger aggregates for most of the polymers examined. Solute core partitioning was examined by the loss of Forster resonance energy transfer (FRET) from a core-loaded donor-acceptor pair. The rate and magnitude of FRET efficiency loss was strongly dependent on the polymer architecture, and was found to be lowest for the bottle-brush, attributed to its covalent nature. Collectively, these findings are expected to impact the molecular design of increasingly stable polymeric carriers for drug delivery applications.


Subject(s)
Nanoparticles/chemistry , Serum/chemistry , Animals , Cattle , Humans , Polyesters/chemistry , Polyethylene Glycols/chemistry , Serum Albumin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...