Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 258: 114982, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37156039

ABSTRACT

Plastic mulch films and biofertilizers (processed sewage sludge, compost or manure) have helped to increase crop yields. However, there is increasing evidence that these practices significantly contribute to microplastic contamination in agricultural soils, affecting biodiversity and soil health. Here, we draw attention to the use of hydrolase enzymes that depolymerize polyester-based plastics as a bioremediation technique for agricultural soils (in situ), biofertilizers and irrigation water (ex situ), and discuss the need for fully biodegradable plastic mulches. We also highlight the need for ecotoxicological assessment of the proposed approach and its effects on different soil organisms. Enzymes should be optimized to work effectively and efficiently under the conditions found in natural soils (typically, moist solids at an ambient temperature with low salinity). Such optimization is also necessary to ensure that already distressed ecosystems are not disrupted any further.


Subject(s)
Ecosystem , Soil , Microplastics , Agriculture/methods , Ecotoxicology , Sewage , Plastics
2.
Environ Sci Eur ; 33(1): 2, 2021.
Article in English | MEDLINE | ID: mdl-33432280

ABSTRACT

Clothing is one of the primary human needs, and the demand is met by the global production of thousands of tons of textile fibers, fabrics and garments every day. Polyester clothing manufactured from oil-based polyethylene terephthalate (PET) is the market leader. Conventional PET creates pollution along its entire value chain-during the production, use and end-of-life phases-and also contributes to the unsustainable depletion of resources. The consumption of PET garments thus compromises the quality of land, water and air, destroys ecosystems, and endangers human health. In this article, we discuss the different stages of the value chain for polyester clothing from the perspective of sustainability, describing current environmental challenges such as pollution from textile factory wastewater, and microfibers released from clothing during the laundry cycle. We also consider potential solutions such as enhanced reuse and recycling. Finally, we propose a series of recommendations that should be applied to polyester clothing at all stages along the value chain, offering the potential for meaningful and effective change to improve the environmental sustainability of polyester textiles on a global scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...