Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 77(6): 923-7, 1998 Sep 11.
Article in English | MEDLINE | ID: mdl-9714065

ABSTRACT

Autocrine growth factors for the epidermal growth factor receptor (EGFR) have been identified in prostate tumors, implicating a role for EGFR in the progression of prostate cancer. To investigate early signaling mechanisms used by the EGFR in prostate tumor cells, we have characterized the involvement of the Shc (src homology 2/x-collagen related) adapter protein in EGFR signaling in several human prostate tumor cell lines. In androgen-responsive lymph node-prostate cancer (LNCaP) cells and androgen-insensitive PC3, DU145 and PPC-I cells, Shc was identified as one of the most prominent phosphotyrosine proteins to be elevated in response to EGF. Equivalent levels of the 46- and 52-kDa Shc isoforms were detected in all of the tumor cell lines tested. However, levels of the 66-kDa isoform were variable among the cell lines. In all of the tumor cell lines, EGF caused an association between Shc and Grb2, another adapter protein linked to cellular ras activation. Additionally, several phosphotyrosine proteins, including a 115-120-kDa protein in EGF-treated LNCaP cells, co-associated with Shc. The profile of these Shc-associating proteins, however, differed among the tumor cell lines. Our results indicate that Shc is a common downstream element of EGFR signaling in prostate tumor cells and suggest multiple functions for Shc in prostate tumorigenesis.


Subject(s)
Adaptor Proteins, Signal Transducing , Adaptor Proteins, Vesicular Transport , Epidermal Growth Factor/metabolism , Prostatic Neoplasms/metabolism , Proteins/metabolism , Signal Transduction , Blotting, Western , Humans , Male , Shc Signaling Adaptor Proteins , Src Homology 2 Domain-Containing, Transforming Protein 1 , Tumor Cells, Cultured/metabolism
2.
Prostate ; 30(3): 167-73, 1997 Feb 15.
Article in English | MEDLINE | ID: mdl-9122041

ABSTRACT

BACKGROUND: Cellular calcium is an important second messenger for growth regulation. We sought to identify potentially important receptors on prostate tumor cells by screening over 20 agonists for their ability to increase intracellular free calcium ([Ca2+]i) in several human prostate tumor cell lines. METHODS: Intracellular calcium mobilization was detected using fura-2. RESULTS: We found bombesin, GRP, ATP/UTP, lysophosphatidic acid, thrombin, endothelin, histamine, and bradykinin increased [Ca2+]i in the advanced tumor cell lines DU-145, PC3, and PPC-1. Bombesin failed to elevate [Ca2+]i in an immortalized human prostate cell line. Rank-order of potency studies suggested the presence of P2U nucleotide receptors for ATP/UTP on prostate epithelial cells. Potency studies also revealed GRP > > bombesin > > neuromedin B at elevating [Ca2+]i in responding tumor cells. CONCLUSIONS: These findings indicate that androgen independent prostate tumor cell lines express multiple receptors capable of elevating intracellular calcium, and suggest that GRP receptors may be selectively expressed and/or coupled to calcium signaling during prostate tumor progression. Calcium sensitive cellular events may therefore contribute to the progression of prostate cancer.


Subject(s)
Calcium Channels/drug effects , Calcium/metabolism , Neuropeptides/physiology , Prostatic Neoplasms/metabolism , Receptors, Bombesin/metabolism , Bombesin/physiology , Dose-Response Relationship, Drug , Humans , Male , Signal Transduction/drug effects , Tumor Cells, Cultured
3.
Clin Cancer Res ; 3(11): 1915-21, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9815580

ABSTRACT

Local invasion and lymph node metastasis are correlated with a decreased overall survival in head and neck cancer patients and warrant new strategies to intervene in the metastatic cascade. One approach is to focus on the intracellular signaling pathways underlying the metastatic process. A common regulatory point in several signal transduction pathways is intracellular calcium homeostasis. We assessed the effect of a novel calcium influx inhibitor, carboxyamido-triazole (CAI), on the growth and invasive phenotype of cell lines derived from head and neck squamous cell carcinoma (HNSCC). CAI inhibited the growth of FaDu and EVSCC17M cells in a dose-dependent (IC50, 13-15 microM) and reversible manner. CAI also caused a generalized attenuation of receptor-mediated calcium elevation to several calcium mobilization agonists, including epidermal growth factor and bradykinin. The effects of CAI on the invasive phenotype of HNSCC cell lines were assessed by a chemo-invasion assay. HNSCC cell lines exhibited a range of invasive potential as measured by the capacity of tumor cells to penetrate a reconstituted basement membrane of Matrigel. HNSCCs were classified as highly invasive (EVSCC14M and EVSCC17M) or weakly invasive (EVSCC18, EVSCC19M, UMSCC10A, and FaDu). Treatment of HNSCC cell lines with 10 microM CAI for 24 h reduced invasion 2-14-fold in a dose-dependent manner. HNSCCs also exhibited different motilities as measured by a chemotaxis assay. EVSCC14M and EVSCC17M were highly motile, whereas EVSCC18, EVSCC19M, UMSCC10A, and FaDu were less motile. CAI reduced the migration of all cell lines. Conditioned medium from HNSCC cell lines was analyzed by zymography for production of Mr 72,000 type IV collagenase [matrix metalloproteinase (MMP)-2)] and Mr 92,000 type IV collagenase (MMP-9). All HNSCC cell lines secreted MMP-2 and/or MMP-9 into conditioned medium. Treatment of cells with 10 microM CAI for 24 h resulted in a reduction of both MMP-2 and MMP-9 production. The results demonstrate that CAI blocks cellular proliferation, migration, chemoinvasion, and MMP production by HNSCC in vitro and identify calcium-dependent signaling as a new target for inhibition of the malignant phenotype of HNSCC.


Subject(s)
Antineoplastic Agents/toxicity , Calcium Channel Blockers/toxicity , Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/pathology , Triazoles/toxicity , Calcium/metabolism , Carcinoma, Squamous Cell/physiopathology , Cell Division/drug effects , Cell Movement/drug effects , Head and Neck Neoplasms/physiopathology , Humans , Kinetics , Neoplasm Invasiveness/prevention & control , Signal Transduction , Tumor Cells, Cultured
4.
Int J Cancer ; 68(2): 259-64, 1996 Oct 09.
Article in English | MEDLINE | ID: mdl-8900438

ABSTRACT

Aberrant cellular signaling is a central feature of malignant cells and a potential target for anti-cancer therapy. Carboxyamido-triazole (CAI) is a calcium influx inhibitor that alters calcium-sensitive signal transduction pathways and suppresses the proliferative and metastatic potential of malignant cells. We have examined the effects of CAI on several tumor-associated parameters in human prostate cancer cell lines to evaluate the potential of CAI as a signal-transduction therapy agent for advanced-stage prostate cancer. Measuring anchorage-dependent cell growth, continuous application of CAI inhibited the growth of DU-145, PPC-1, PC3 and LNCaP tumor cells with 50% inhibitory concentrations ranging 10-30 microM. Direct cell enumeration assays revealed that the growth-suppressing activity of CAI toward DU-145 cells was reversible, indicating a cytostatic effect of the drug on tumor cells. The drug also inhibited the proliferation of several immortalized human prostatic epithelial cell lines. The proliferation of HaCaT- and RHEK-1-immortalized keratinocyte cell lines was relatively insensitive to CAI. Additionally, invasion by DU-145, PC3 and PPC-1 cells through Matrigel in vitro was reduced approximately 60-70% by 10 microM CAI. Other cellular effects of CAI included an attenuation of the elevation of intracellular free calcium in response to bombesin and carbachol in PC3 cells and a marked dose-dependent inhibition of prostate-specific antigen secretion in LNCaP cell cultures.


Subject(s)
Antineoplastic Agents/pharmacology , Prostatic Neoplasms/pathology , Triazoles/pharmacology , Calcium/metabolism , Cell Division/drug effects , Humans , Male , Neoplasm Invasiveness , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Tumor Cells, Cultured , Tumor Stem Cell Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...