Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(13): 11069-11085, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38913981

ABSTRACT

Breast adenocarcinoma ranks high among the foremost lethal cancers affecting women globally, with its triple-negative subtype posing the greatest challenge due to its aggressiveness and resistance to treatment. To enhance survivorship and patients' quality of life, exploring advanced therapeutic approaches beyond conventional chemotherapies is imperative. To address this, innovative nanoscale drug delivery systems have been developed, offering precise, localized, and stimuli-triggered release of anticancer agents. Here, we present perylenemonoimide nanoparticle-based vehicles engineered for deep-red light activation, enabling direct chlorambucil release. Synthesized via the reprecipitation technique, these nanoparticles were thoroughly characterized. Light-induced drug release was monitored via spectroscopic and reverse-phase HPLC. The efficacy of the said drug delivery system was evaluated in both two-dimensional and three-dimensional spheroidal cancer models, demonstrating significant tumor regression attributed to apoptotic cell death induced by efficient drug release within cells and spheroids. This approach holds promise for advancing targeted breast cancer therapy, enhancing treatment efficacy and minimizing adverse effects.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Spheroids, Cellular , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Spheroids, Cellular/drug effects , Drug Liberation , Light , Chlorambucil/chemistry , Chlorambucil/pharmacology , Chlorambucil/therapeutic use , Nanoparticles/chemistry , Cell Line, Tumor , Apoptosis/drug effects , Photons , Perylene/analogs & derivatives , Perylene/chemistry , Perylene/pharmacology , Perylene/therapeutic use , Red Light
2.
J Org Chem ; 89(6): 4165-4175, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439518

ABSTRACT

Herein, we report the first total synthesis of berkeleylactone I and its 12S diastereomer. Consequently, this chemical synthesis allowed us to establish the unknown absolute stereochemistry at the C-12 center as 12R, which was unidentified by the isolation group. This synthetic approach includes several critical reactions, such as the Sharpless asymmetric dihydroxylation, Baran's Ni-catalyzed alkyl-alkyl cross-coupling reaction, Brown allylation, Mitsunobu reaction, and ring-closing metathesis, as key steps.

SELECTION OF CITATIONS
SEARCH DETAIL
...