Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(49): 46034-46043, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31713406

ABSTRACT

A major challenge for many industries wanting to adopt 3D printing technologies for rapid prototyping, customized parts, and low-volume manufacturing depends on the availability and functionality of the input materials to suit specific requirements. A well-studied nanofiller because of its distinct properties and wide range of applications, graphene oxide (GO) proves to be a good choice in the development of new materials. However, as a filler in a polymer matrix, GO has its own unique set of problems enough to make certain constraints in achieving an optimum reinforcement in the targeted polymer matrix. The need for a matrix-filler interaction is critical because reinforcement occurs only when the external load applied to the material can be successfully transmitted from the matrix to the filler, which will only happen if the interfacial adhesion between the matrix and the filler is strong. This study demonstrates the synthesis of the covalently linked GO-methacrylate (MA) nanocomposite materials through 3D printing via stereolithography (SL). Spectral analysis using Fourier-transform infrared confirms the successful functionalization of GO and ascertains the presence of the functionalized GO (fGO) in the 3D-printed nanocomposite specimens. Likewise, further validation using thermogravimetric analysis and differential scanning calorimetry also affirms the formation of fGO for use as a functional filler, activating a stronger interfacial bonding with the MA polymer. Excellent attributes of GO will become futile because of premature fracturing of the material simply because of an oversight to consider robustness during the early stages of design. Hence, different mechanical and thermal properties of the new 3D-printed MA-fGO nanocomposite material are characterized and presented in the discussion. This work demonstrates the first successful 3D printing of the functionalized GO nanocomposite via SL, forming a complex structure with consistently high fidelity and enhanced material properties with potential for various industrial applications.

2.
ACS Appl Mater Interfaces ; 9(39): 34314-34324, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28876895

ABSTRACT

The advantages of 3D printing on cost, speed, accuracy, and flexibility have attracted several new applications in various industries especially in the field of medicine where customized solutions are highly demanded. Although this modern fabrication technique offers several benefits, it also poses critical challenges in materials development suitable for industry use. Proliferation of polymers in biomedical application has been severely limited by their inherently weak mechanical properties despite their other excellent attributes. Earlier works on 3D printing of polymers focus mainly on biocompatibility and cellular viability and lack a close attention to produce robust specimens. Prized for superior mechanical strength and inherent stiffness, cellulose nanocrystal (CNC) from abaca plant is incorporated to provide the necessary toughness for 3D printable biopolymer. Hence, this work demonstrates 3D printing of CNC-filled biomaterial with significant improvement in mechanical and surface properties. These findings may potentially pave the way for an alternative option in providing innovative and cost-effective patient-specific solutions to various fields in medical industry. To the best of our knowledge, this work presents the first successful demonstration of 3D printing of CNC nanocomposite hydrogel via stereolithography (SL) forming a complex architecture with enhanced material properties potentially suited for tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...