Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36295168

ABSTRACT

Ceramic composites with nanoparticles are intensively investigated due to their unique thermal, mechanic and electromagnetic properties. In this work, dielectric properties of phosphate ceramics with round silver nanoparticles of various sizes were studied in the wide frequency range of 20 Hz-40 GHz for microwave shielding applications. The percolation threshold in ceramics is close to 30 wt.% of Ag nanoparticles content and it is higher for bigger-sized nanoparticles. The microwave complex dielectric permittivity of ceramics above the percolation threshold is rather high (ε' = 10 and ε″ = 10 at 30 GHz for ceramics with 50 wt.% inclusions of 30-50 nm size, it corresponds to almost 61% absorption of 2 mm-thickness plate) therefore these ceramics are suitable for microwave shielding applications. Moreover, the microwave absorption is bigger for ceramics with a larger concentration of fillers. In addition, it was demonstrated that the electrical transport in ceramics is thermally activated above room temperature and the potential barrier is almost independent of the concentration of nanoparticles. At very low temperature, the electrical transport in ceramics can be related to electron tunneling.

2.
Polymers (Basel) ; 13(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805067

ABSTRACT

Polymer matrix composites filled with carbon nanoparticles are promising materials for many applications, but their properties strongly depend on the particle features, concentration and distribution within the matrix. Here we present a study of the electrical resistivity and the low-frequency voltage fluctuation of composites based on epoxy resin filled with onion-like carbon (OLC) of different sizes (40-250 nm) above the percolation threshold, which should clarify the electrical transport characteristics in these materials. Electrical measurements were performed in the temperature range of 78 to 380 K, and voltage noise analysis was carried out from 10 Hz to 20 kHz. At low temperatures (below 250 K), thermally activated tunneling, variable-range hopping and generation-recombination of charge carriers take place. Above 250 K, the rapid expansion of the matrix with the temperature increases the resistivity, but above ~330 K, the conductivity of the matrix becomes significant. Quasi one-dimensional electrical transport is observed in composites with the smallest particles (40 nm), while in composites with the largest particles (220-250 nm), the dimensionality of the electrical transport is higher. The temperature dependence of the electrical conductivity of composites with smaller particles is more sensitive to matrix expansion.

3.
Materials (Basel) ; 13(12)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630508

ABSTRACT

The dielectric properties of Ba1-xCaxTiO3 (x = 0.17) ceramics were studied in a wide frequency range of 20 Hz-53 GHz. Diffused ferroelectric phase transition was revealed close to 339 K in the dielectric properties of ceramics. The behaviour of distributions of relaxation times in vicinity of the ferroelectric phase transition temperature is also typical for order-disorder ferroelectric phase transition. However, at lower temperatures (below 200 K), the most probable relaxation increased according to the Arrhenius law. At lower temperatures the maximum of the imaginary part of dielectric permittivity versus temperature strongly shifted to higher temperatures when the frequency increased (from 125 K at 1.21 kHz to 300 K at 33 GHz). This behaviour was attributed to the dynamics of Ti ions. The origin of the crossover from ferroelectric to relaxor behaviour of Ba1-xCaxTiO3 (x = 0.17) ceramics is discussed in the paper.

4.
Materials (Basel) ; 12(24)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835642

ABSTRACT

The electromagnetic properties of various carbon gels, produced with different bulk densities, were investigated in a wide frequency range (20 Hz-36 GHz). The values of dielectric permittivity and electrical conductivity at 129 Hz were found to be very high, i.e., more than 105 and close to 100 S/m, respectively. Both strongly decreased with frequency but remained high in the microwave frequency range (close to 10 and about 0.1 S/m, respectively, at 30 GHz). Moreover, the dielectric permittivity and the electrical conductivity strongly increased with the bulk density of the materials, according to power laws at low frequency. However, the maximum of microwave absorption was observed at lower densities. The DC conductivity slightly decreased on cooling, according to the Arrhenius law. The lower activation energies are typical of carbon gels presenting lower DC electrical conductivities, due to a higher number of defects. High and thermally stable electromagnetic properties of carbon gels, together with other unique properties of these materials, such as lightness and chemical inertness, open possibilities for producing new electromagnetic coatings.

SELECTION OF CITATIONS
SEARCH DETAIL
...