Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Food Chem ; 455: 139840, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838621

ABSTRACT

Impact of high-pressure processing (HP-P) on microbial inactivation, protein oxidation, collagen fiber, and muscle structure of the edible portion (EP) of blood clams (BC) was investigated. Aerobic plate count, Vibrio parahaemolyticus, V. vulnificus, other Vibrio spp. and Shewanella algae counts were not detectable when HP-P pressure of ≥300 MPa was applied. Carbonyl, disulphide bond content, and surface hydrophobicity upsurged as HP-P with augmenting pressure was employed. Protein with ∼53 kDa appeared when HP-P at 100 and 200 MPa was implemented. Increased pressure enhanced gap formation and abnormal muscle cell structure arrangements. HP-P also affected connective tissue, causing size reduction and disruption of the collagen filament fibers. However, firmness and toughness of BC-EP with HP-P ≤ 300 MPa were comparable to those of the control. HP-P at 300 MPa was therefore appropriate for treatment of BC with maintained textural properties, while less protein oxidation, collagen fiber and muscle structure disruption occurred.


Subject(s)
Bivalvia , Collagen , Animals , Bivalvia/chemistry , Bivalvia/microbiology , Collagen/chemistry , Pressure , Shewanella/chemistry , Shewanella/metabolism , Food Handling , Shellfish/analysis , Shellfish/microbiology , Vibrio/chemistry , Muscles/chemistry
2.
Foods ; 13(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672936

ABSTRACT

Squid (Loligo vulgaris) is commonly prone to spoilage, leading to a short shelf-life. High-pressure processing (HPP) can play a role in maintaining the quality and freshness of squid. Along with HPP, food preservatives from natural sources such as mint extract (ME), which are effective, safe, available, and cost-effective, are required. The present study aimed to investigate the combined effect of ME and HPP on the quality of refrigerated squid mantle cuts (SMC) over a period of 15 days. The time-kill profiles of ME and planktonic cell inactivation by HPP were assessed. ME (400 mg/L) inhibited bacterial growth, while planktonic cells treated with HPP (400 MPa) exhibited a reduction at 5 min. Physicochemical and microbial qualities of SMC treated with ME (0, 200, 400 mg/L) followed by HPP (0.1, 200, 400 MPa) for 5 min were monitored during refrigerated storage. Samples treated with ME (400 mg/L) and HPP (400 MPa) exhibited lower weight loss, cooking loss, pH changes, volatile base content, microbial counts, and higher textural properties than other samples. Based on next-generation sequencing results, Brochothrix campestris from family Listeriaceae was the predominant spoilage bacteria in treated sample after 12 days of storage. Therefore, ME and HPP combined treatments exhibited effectiveness in extending the shelf-life of refrigerated SMC.

3.
Food Chem ; 447: 138948, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38513490

ABSTRACT

Impact of high-pressure processing (HP-P) on hemolymph and lipid globular structures of the edible portion (EP) of blood clams (BC) was investigated. HP-P above 400 MPa decreased heme iron content, while upsurged non-heme iron content. Increasing pressure induced gaps and abnormal hemocyte cell arrangements. However, HP-P at 300 MPa improved and maintained total hemocyte counts, the heme iron content, and a*-value in BC-EP. For lipid globular structures, the mean diameter drastically decreased when an HP-P pressure of 600 MPa was employed. HP-P at higher pressure induced lipid oxidation, along with decreases in monounsaturated and polyunsaturated fatty acids as well as increases in thiobarbituric acid reactive substances and peroxide value. FTIR spectra displayed a reduction in phosphate groups and cis double bonds in lipids from HP-P treated BC, compared to controls. Therefore, HP-P at 300 MPa is recommended for preparing ready-to-cook BC with less tissue damage and lipid oxidation.


Subject(s)
Bivalvia , Hemolymph , Animals , Lipid Peroxidation , Fatty Acids, Unsaturated , Heme/chemistry , Iron
4.
Crit Rev Food Sci Nutr ; : 1-25, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38380625

ABSTRACT

Foodborne illnesses occur due to the contamination of fresh, frozen, or processed food products by some pathogens. Among several pathogens responsible for the illnesses, Listeria monocytogenes is one of the lethal bacteria that endangers public health. Several preexisting and novel technologies, especially non-thermal technologies are being studied for their antimicrobial effects, particularly toward L. monocytogenes. Some noteworthy emerging technologies include ultraviolet (UV) or light-emitting diode (LED), pulsed light, cold plasma, and ozonation. These technologies are gaining popularity since no heat is employed and undesirable deterioration of food quality, especially texture, and taste is devoided. This review aims to summarize the most recent advances in non-thermal processing technologies and their effect on inactivating L. monocytogenes in food products and on sanitizing packaging materials. These technologies use varying mechanisms, such as photoinactivation, photosensitization, disruption of bacterial membrane and cytoplasm, etc. This review can help food processing industries select the appropriate processing techniques for optimal benefits, in which the structural integrity of food can be preserved while simultaneously destroying L. monocytogenes present in foods. To eliminate Listeria spp., different technologies possess varying mechanisms such as rupturing the cell wall, formation of pyrimidine dimers in the DNA through photochemical effect, excitation of endogenous porphyrins by photosensitizers, generating reactive species, causing leakage of cellular contents and oxidizing proteins and lipids. These technologies provide an alternative to heat-based sterilization technologies and further development is still required to minimize the drawbacks associated with some technologies.

5.
Foods ; 12(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38002109

ABSTRACT

The antibacterial activities of quercetin and hyperoside were evaluated towards two major spoilage bacteria in fish, Pseudomonas aeruginosa (PA) and Shewanella putrefaciens (SP). Hyperoside showed a lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) towards both spoilage bacteria, PA and SP, than quercetin. Cell membrane morphology was affected when treated with hyperoside and quercetin. The release of content from the treated cells occurred, as ascertained by the release of potassium and magnesium ions and the increase in conductivity of the culture media. The morphology of cells was significantly changed, in which shrinkage and pores were obtained, when observed using SEM. Both compounds negatively affected the motility, both swimming and swarming, and the formation of extracellular polymeric substance (EPS), thus confirming antibiofilm activities. Agarose gel analysis revealed that both compounds could bind to or degrade the genomic DNA of both bacteria, thereby causing bacterial death. Molecular docking indicated that the compounds interacted with the minor groove of the DNA, favoring the adenine-thymine-rich regions. Thus, both quercetin and hyperoside could serve as potential antimicrobial agents to retard the spoilage of fish or perishable products.

6.
J Food Sci ; 88(11): 4653-4663, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37799068

ABSTRACT

Contaminated fungi on dried salted fish of three species including Talang queenfish (TQF, Scomberroides commersonianus), Hamilton's thryssa fish (HTF, Thryssa hamiltonii), and Cobia fish (CF, Rachycentron canadum) were isolated and identified. One hundred and sixty-nine isolates were obtained from TQF and HTF, respectively, while no fungi were detected in CF. The dominant genera were Aspergillus spp. (n = 79), Penicillium spp. (n = 60), and non-sporulating fungi (n = 30). The representative groups of Aspergillus spp. (n = 6) and Penicillium spp. (n = 3) based on different morphological characteristics were selected for species identification by molecular methods involving ITS1-5.8s-ITS2 region and Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometer (MALDI-TOF MS) analysis. The nine isolates were identified to be Aspergillus versicolor (n = 2), Aspergillus montevidensis (n = 3), Penicillium citrinum (n = 3), and Aspergillus sp. (n = 1). The antifungal activity of chitooligosaccharide-gallic acid (COS-GAL) conjugate against A. versicolor F1/10M9, A. montevidensis F1/30M20, and P. citrinum F1/23M14 was examined. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were in the range of 0.625-2.5 mg/mL and 1.25-10 mg/mL, respectively. COS-GAL conjugate at the concentration of 5 mg/mL completely inhibited the spore germination of A. versicolor F1/10M9 and P. citrinum F1/23M14 after 72 h of treatment. COS-GAL conjugate at 4 × MIC mainly affected the mycelium of A. versicolor F1/10M9 and P. citrinum F1/23M14 after treatment with COS-GAL conjugate for 3 days by coating mycelium surface and reducing the size of mycelium. Therefore, COS-GAL conjugate could be used as a food additive to inhibit or prevent the growth of fungi contaminated in dried salted fish or other relevant products. PRACTICAL APPLICATION: During processing, dried salted fish can be contaminated with fungi, which may cause food poisoning and food spoilage. The contaminated fungi are capable of producing mycotoxin that is harmful to consumers. Synthetic food preservatives have long been used to inhibit fungal growth, but the side effects to consumers are of concern. Chitooligosaccharide is a nontoxic chitosan derivative produced from shrimp shell and its conjugate namely chitooligosaccharide-gallic acid conjugate showed high efficacy in inhibiting the growth of fungi including Aspergillus spp. and Penicillium spp. Therefore, it can serve as a natural alternative preservative for the prevention of fungal growth in dried salted fish.


Subject(s)
Chitosan , Penicillium , Animals , Fungi , Antifungal Agents/pharmacology , Chitosan/pharmacology , Fishes/microbiology
7.
Biosensors (Basel) ; 13(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37504096

ABSTRACT

Vibrio parahaemolyticus is usually found in seafood and causes acute gastroenteritis in humans. Therefore, a detection method of pathogenic V. parahaemolyticus is necessary. Multiplex PCR combined with lateral flow dipstick (LFD) assay was developed to detect pathogenic V. parahaemolyticus. Biotin-, FAM-, and Dig-conjugated primers targeting thermolabile hemolysin (TLH) and thermostable direct hemolysin (TDH) genes were used for multiplex PCR amplification. The condition of the method was optimized and evaluated by agarose gel electrophoresis and universal lateral flow dipstick. The specificity assay was evaluated using strains belonging to seven foodborne pathogen species. The sensitivity of the method was also evaluated using DNA in the concentration range of 0.39-100 ng/reaction. The artificial spiking experiment was performed using 10 g of shrimp samples with an enrichment time of 0, 4, and 8 h with 101, 102, and 103 CFU of V. parahaemolyticus. The developed multiplex PCR-LFD assay showed no non-specific amplification with a limit of the detection of 0.78 ng DNA/reaction visualized by agarose gel electrophoresis and 0.39 ng DNA with LFD assay. The artificial spiking experiment demonstrated that this method could detect pathogenic V. parahaemolyticus at 10 CFU/10 g shrimp samples following a 4 h of enrichment. Multiplex PCR-LFD assay was therefore established for detecting pathogenic V. parahaemolyticus with high sensitivity and specificity and might be a useful tool to develop a detection kit used in the food safety sector.


Subject(s)
Bacterial Toxins , Vibrio parahaemolyticus , Humans , Multiplex Polymerase Chain Reaction , Hemolysin Proteins/genetics , Vibrio parahaemolyticus/genetics , DNA
8.
Foods ; 12(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36766163

ABSTRACT

The antibacterial effect of chitooligosaccharide conjugated with five different polyphenols, including catechin (COS-CAT), epigallocatechin gallate (COS-EGCG), gallic acid (COS-GAL), caffeic acid (COS-CAF), and ferulic acid (COS-FER), against Listeria monocytogenes was investigated. Among all the conjugates tested, COS-EGCG showed the highest inhibition toward Listeria monocytogenes, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 1024 and 1024 µg/mL, respectively. The COS-EGCG conjugate also had a bactericidal effect on the environmental and clinical strains of L. monocytogenes. The low concentration of COS-EGCG conjugate augmented the formation of biofilm and the growth of L. monocytogenes. Nevertheless, the inhibition of biofilm formation and bacterial growth was achieved when treated with the COS-EGCG conjugate at 2 × MIC for 48 h. In addition, the COS-EGCG conjugate at 2 × MIC had the potential to inactivate the pre-biofilm, and it reduced the production of the extracellular polysaccharides of L. monocytogenes. The COS-EGCG conjugate at the MIC/4 effectively impeded the motility (the swimming and swarming) of L. monocytogenes, with an 85.7-94.3% inhibition, while 100% inhibition was achieved with the MIC. Based on scanning electron microscopic (SEM) images, cell wall damage with numerous pores on the cell surface was observed. Such cell distortion resulted in protein leakage. As a result, COS-EGCG could penetrate into the cell and bind with the DNA backbone. Therefore, the COS-EGCG conjugate could be further developed as a natural antimicrobial agent for inhibiting or controlling L. monocytogenes.

9.
Foods ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38201056

ABSTRACT

Harpiosquillid mantis shrimp (Harpiosquilla raphidea) (HMS) without and with beheading pretreated with pulsed electric field (PEF) (15 kV/cm, 800 pulses, 5 min) were soaked in chitooligosaccharide (COS) solution at varying concentrations (0, 1 and 2%, w/v) for 20 min and stored for 3 days in iced water. Changes in the trypsin activity, color, texture, protein pattern, TCA soluble peptide content, histological images, protein secondary structure and microbial load were monitored during the storage. The beheaded HMS pretreated with PEF and soaked in 2% COS solution showed the maximum efficacy in inhibiting trypsin activity and proteolysis, thus retaining muscle proteins, especially myosin heavy chain, actin and troponin T as well as shear force up to day 3. Pronounced muscle destruction in the whole HMS was displayed by a decreased mean grey index and fiber gapping. Such changes were lowered by the beheading and PEF/2% COS treatment (2% COS-BH). Nevertheless, no marked change in the secondary structure including α-helix, ß-sheets, ß-turns and random coil were observed among any of the samples. The microbiological analysis revealed that the total viable count (TVC) was below 6 log CFU/g till day 2 in all samples. Nonetheless, the 2% COS-BH sample had the lowest psychrophilic bacterial count and Enterobacteriaceae count at day 3, compared to the others. Thus, the combination of the prior PEF and 2% COS treatment of beheaded HMS could effectively inhibit proteases, retard the microbial growth and maintain the quality of HMS stored in iced water.

10.
Foods ; 11(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36553790

ABSTRACT

Fifty isolates of Vibrio parahaemolyticus were tested for pathogenicity, biofilm formation, motility, and antibiotic resistance. Antimicrobial activity of chitooligosaccharide (COS)-tea polyphenol conjugates against all isolates was also studied. Forty-three isolates were randomly selected from 520 isolates from Asian green mussel (Perna viridis) grown on CHROMagarTM Vibrio agar plate. Six isolates were acquired from stool specimens of diarrhea patients. One laboratory strain was V. parahaemolyticus PSU.SCB.16S.14. Among all isolates tested, 12% of V. parahaemolyticus carried the tdh+trh- gene and were positive toward Kanagawa phenomenon test. All of V. parahaemolyticus isolates could produce biofilm and showed relatively strong motile ability. When COS-catechin conjugate (COS-CAT) and COS-epigallocatechin-3-gallate conjugate (COS-EGCG) were examined for their inhibitory effect against V. parahaemolyticus, the former showed the higher bactericidal activity with the MBC value of 1.024 mg/mL against both pathogenic and non-pathogenic strains. Most of the representative Asian green mussel V. parahaemolyticus isolates exhibited high sensitivity to all antibiotics, whereas one isolate showed the intermediate resistance to cefuroxime. However, the representative clinical isolates were highly resistant to nine types of antibiotics and had multiple antibiotic resistance (MAR) index of 0.64. Thus, COS-CAT could be used as potential antimicrobial agent for controlling V. parahaemolyticus-causing disease in Asian green mussel.

11.
Environ Monit Assess ; 193(5): 291, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33891179

ABSTRACT

Fifteen native luminescent bacteria were isolated from the Gulf of Thailand, and their sensitivity for the detection of toxicity of crude oil and its aromatic components was investigated. Of these isolates, Vibrio campbellii strain FS5 was one of the two most highly inhibited bacteria at all crude oil concentrations. This bacterium showed a decrease in luminescence intensity of between 10.7 and 80.2% after a 15-min exposure to 0.0001-10 mg/L of crude oil. The degree of bioluminescence inhibition increased with increasing concentrations of crude oil. The presence of crude oil at all concentrations had negative effects on the log bioluminescence per log number of viable cells after 15- to 105-min exposure. About 10 to 100 times, lower half maximal effective concentration (EC50) values were observed for polycyclic aromatic hydrocarbons (PAHs) than those for benzene, toluene, ethylbenzene, and xylene (BTEX). In the presence of each individual BTEX and PAH, the bioluminescence inhibition increased with increasing exposure time (1-32 h). This indigenous bacterium can be used as a simple and general indicator of oil contamination and its impact on coastal waters as well as for assessing potential toxicity during oil bioremediation.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Environmental Monitoring , Petroleum/analysis , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Thailand , Vibrio
12.
J Biotechnol ; 314-315: 41-52, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32259548

ABSTRACT

This work reports on production of ethanol with simultaneous fixing of nitrogen (N2) using the anaerobic bacterium Zymomonas mobilis DSM 473. A batch fermentation with an initial glucose concentration of 50 g L-1, an initial pH of ∼5.5, an inoculum size of 10% by volume and a N2 feeding rate of 50 mL min-1 without mechanical agitation was found to provide the highest ethanol productivity (0.401 g L-1 h-1). Ethanol yield on glucose exceeded 97% of the theoretical maximum. The nitrogen content of the microbial biomass was 10.4% w/w at 65 h and all of it was derived by fixation of dinitrogen. Repeated-batch fermentations were investigated for ethanol production using simultaneous nitrogen fixation. A 2-cycle repeated-batch fermentation lasting 71 h gave a maximum ethanol yield on glucose of 0.475 g g-1 and an ethanol productivity of 0.675 g L-1 h-1. The yield (0.415 g g-1) and productivity (0.638 g L-1 h-1) were reduced in a 3-cycle repeated batch operation lasting 94 h. The need to fix nitrogen did not reduce the final achievable ethanol concentration, or the ethanol yield on glucose, relative to fermentations provided with fixed nitrogen, but did reduce the ethanol productivity by ∼82% because less cell mass was produced.


Subject(s)
Ethanol/metabolism , Nitrogen Fixation , Zymomonas/metabolism , Batch Cell Culture Techniques , Biomass , Culture Media/chemistry , Culture Media/metabolism , Fermentation , Glucose/analysis , Glucose/metabolism , Hydrogen-Ion Concentration , Nitrogen/analysis , Nitrogen/metabolism
13.
Carbohydr Polym ; 155: 491-497, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27702540

ABSTRACT

A sequential two-step treatment with peracetic acid (PA) and alkaline peroxide (AP) at mild temperatures (20-35°C) removed more than 98% of the lignin from oil palm empty fruit bunch (EFB) fiber. For each kilogram of EFB fiber treated, 200-250g of a solids fraction and 120-170g of a precipitate fraction were recovered after the treatment. Subsequent enzymatic hydrolysis (45°C, 72h) of the recovered solids (excluding the precipitate) resulted in a glucose yield of 629.8±0.5g per kg of the original dry EFB biomass. Enzymatic hydrolysis of untreated EFB yielded only 3.0±0.0g glucose per kg of dry EFB. Therefore, the PA-AP pretreatment enhanced glucose recovery from EFB by nearly 210-fold. The total treatment time was 93h (a 9h PA treatment at 35°C, a 12h treatment with AP (20°C, 4% NaOH), 72h of enzymatic hydrolysis).

SELECTION OF CITATIONS
SEARCH DETAIL
...