Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38067651

ABSTRACT

This comprehensive review investigates the potential of aluminum oxide (Al2O3) as a highly effective adsorbent for organic dye degradation. Al2O3 emerges as a promising solution to address environmental challenges associated with dye discharge due to its solid ceramic composition, robust mechanical properties, expansive surface area, and exceptional resistance to environmental degradation. The paper meticulously examines recent advancements in Al2O3-based materials, emphasizing their efficacy in both organic dye degradation and adsorption. Offering a nuanced understanding of Al2O3's pivotal role in environmental remediation, this review provides a valuable synthesis of the latest research developments in the field of dye degradation. It serves as an insightful resource, emphasizing the significant potential of aluminum oxide in mitigating the pressing environmental concerns linked to organic dye discharge. The application of Al2O3-based catalysts in the photocatalytic treatment of multi-component organic dyes necessitates further exploration, particularly in addressing real-world wastewater complexities.

2.
Materials (Basel) ; 16(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37297078

ABSTRACT

AISI 1065 is a carbon steels that is widely used in manufacturing industrial components owing to its high tensile strength and wear resistance. One of the major applications of such high-carbon steels is the manufacturing of multipoint cutting tools for materials such as metallic card clothing. The quality of the yarn is determined by the transfer efficiency of the doffer wire, which depends on its saw tooth geometry. The life and efficiency of the doffer wire depends on its hardness, sharpness, and wear resistance. This study focuses on the output of laser shock peening on the surface of the cutting edge of samples without an ablative layer. The obtained microstructure is bainite, which is composed of finely dispersed carbides in the ferrite matrix. The ablative layer induces 11.2 MPa more surface compressive residual stress. The sacrificial layer acts as a thermal protectant by decreasing surface roughness to 30.5%. The sample with a protective layer has a value of 216 HV, which is 11.2% greater than that of the unpeened sample.

3.
Polymers (Basel) ; 15(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37299364

ABSTRACT

This review examines the mechanical performance of metal- and polymer-based composites fabricated using additive manufacturing (AM) techniques. Composite materials have significantly influenced various industries due to their exceptional reliability and effectiveness. As technology advances, new types of composite reinforcements, such as novel chemical-based and bio-based, and new fabrication techniques are utilized to develop high-performance composite materials. AM, a widely popular concept poised to shape the development of Industry 4.0, is also being utilized in the production of composite materials. Comparing AM-based manufacturing processes to traditional methods reveals significant variations in the performance of the resulting composites. The primary objective of this review is to offer a comprehensive understanding of metal- and polymer-based composites and their applications in diverse fields. Further on this review delves into the intricate details of metal- and polymer-based composites, shedding light on their mechanical performance and exploring the various industries and sectors where they find utility.

4.
Molecules ; 28(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37110755

ABSTRACT

Rapidly increasing industrialisation has human needs, but the consequences have added to the environmental harm. The pollution caused by several industries, including the dye industries, generates a large volume of wastewater containing dyes and hazardous chemicals that drains industrial effluents. The growing demand for readily available water, as well as the problem of polluted organic waste in reservoirs and streams, is a critical challenge for proper and sustainable development. Remediation has resulted in the need for an appropriate alternative to clear up the implications. Nanotechnology is an efficient and effective path to improve wastewater treatment/remediation. The effective surface properties and chemical activity of nanoparticles give them a better chance to remove or degrade the dye material from wastewater treatment. AgNPs (silver nanoparticles) are an efficient nanoparticle for the treatment of dye effluent that have been explored in many studies. The antimicrobial activity of AgNPs against several pathogens is well-recognised in the health and agriculture sectors. This review article summarises the applications of nanosilver-based particles in the dye removal/degradation process, effective water management strategies, and the field of agriculture.

5.
Nanomaterials (Basel) ; 12(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35630976

ABSTRACT

In the current world situation, population and industrial growth have become major problems for energy and environmental concerns. Extremely noxious pollutants such as heavy metal ions, dyes, antibiotics, phenols, and pesticides in water are the main causes behind deprived water quality leading to inadequate access to clean water. In this connection, graphite carbon nitride (GCN or g-C3N4) a nonmetallic polymeric material has been utilized extensively as a visible-light-responsive photocatalyst for a variety of environmental applications. This review focuses on recent developments in the design and photocatalytic applications of metal-doped GCN-based nanomaterials in CO2 photoreduction, water splitting toward hydrogen production, bacterial disinfection, and organic pollutant degradation. Additionally, this review discusses various methods of using GCN-based materials to optimize dye sensitization, metal deposition, ion doping, and their environmental applications.

6.
Molecules ; 26(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068541

ABSTRACT

In the recent decades, development of new and innovative technology resulted in a very high amount of effluents. Industrial wastewaters originating from various industries contribute as a major source of water pollution. The pollutants in the wastewater include organic and inorganic pollutants, heavy metals, and non-disintegrating materials. This pollutant poses a severe threat to the environment. Therefore, novel and innovative methods and technologies need to adapt for their removal. Recent years saw nanomaterials as a potential candidate for pollutants removal. Nowadays, a range of cost-effective nanomaterials are available with unique properties. In this context, nano-absorbents are excellent materials. Heavy metal contamination is widespread in underground and surface waters. Recently, various studies focused on the removal of heavy metals. The presented review article here focused on removal of contaminants originated from industrial wastewater utilizing nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...