Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Res ; 215(Pt 3): 114325, 2022 12.
Article in English | MEDLINE | ID: mdl-36154860

ABSTRACT

A sequence of Schiff base Cobalt (II) Mobile Composite Matter 41 heterojunction (SBCo(II)-MCM 41) was prepared by post-synthetic protocols. Various characterization techniques were used to characterize the above samples and MCM 41: Morphology, functional groups, optical properties, crystalline nature, pore diameter, and binding energy by scanning electron microscope (SEM), High-resolution transition electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), Ultra Violet-Visible Spectroscopy (UV), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) and X-ray Photoelectron Spectroscopy (XPS). After the encapsulation of SBCo(II) on the MCM 41, the intensity in the 100-plane in powder x-ray diffraction (XRD) decreased significantly; moreover, the light absorption behavior in UV analysis was improved. The change in the surface area and the decrease in the pore diameter of the sample were also demonstrated by the BET study. The XPS results confirmed the presence of Si, O, C, N, and Co in the SBCo(II)-MCM 41 complex. The photocatalytic performance of MCM 41 and SBCo(II)-MCM 41 materials tested by the degradation of methylene blue dye (MBD) shows that MCM 41 immobilization with SBCo(II)complex is rapidly degraded under natural sunlight irradiation. The optimized 10 mg SBCo(II)-MCM 41 catalyst concentrations showed effective enhancement with the highest efficiency of 98% achieved within 2 h compared to the other two SBCo(II)-MCM 41 concentrations. Moreover, the catalytic efficiency of SBCo(II)-MCM 41 showed a biomimetic reaction without using an oxidant, which exposed it as an effective catalyst for amine to imine conversion; it was useful in the medical field for enzymes with structural assembly.


Subject(s)
Methylene Blue , Schiff Bases , Amines , Cobalt , Methylene Blue/chemistry , Oxidants , Powders , Silicon Dioxide , Titanium/chemistry
2.
Pol J Radiol ; 82: 149-151, 2017.
Article in English | MEDLINE | ID: mdl-28382187

ABSTRACT

BACKGROUND: Slipped capital femoral epiphysis (SCFE), a fracture through the physis with resultant slip of the epiphysis, is the most common hip abnormality in adolescents and is a major cause of early osteoarthritis. Plain radiograph is the initial modality used to evaluate patients with painful hip joints. Ultrasonography and magnetic resonance imaging (MRI), which do not involve radiation exposure, have also been used. This case report supports the view that ultrasound can be used as an initial, cost-effective and radiation-free modality for the evaluation of suspected SCFE. CASE REPORT: A 15-year-old male patient presented with pain in the right hip for 5 days, following a slip and fall accident while playing soccer. The patient was referred to the Department of Radio-diagnosis for ultrasound. A posterior displacement of the femoral head epiphysis with a physeal step was seen on the longitudinal section obtained over the right hip joint region. The anterior physeal step (APS) measured ~3.8 mm on the right side. The distance between the anterior rim of the acetabulum and the metaphysis measured ~20.4 mm on the affected right side and ~23.6 mm on the left side. A plain radiograph in frog leg position showed a widening of the right proximal physis below the right femoral head, with a medial and posterior slip of the right femoral head. A frontal radiograph of the pelvis taken six months before showed a widening of the proximal right femoral physis. CONCLUSIONS: Although MRI appears to be the most sensitive modality for identifying slips early, ultrasound may be used as a cost-effective and radiation-free alternative before proceeding with further evaluation of suspected SCFE, especially considering the demographics of the affected population.

SELECTION OF CITATIONS
SEARCH DETAIL