Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Ecol Evol ; 39(1): 89-100, 2024 01.
Article in English | MEDLINE | ID: mdl-38114339

ABSTRACT

We present the results of our 15th horizon scan of novel issues that could influence biological conservation in the future. From an initial list of 96 issues, our international panel of scientists and practitioners identified 15 that we consider important for societies worldwide to track and potentially respond to. Issues are novel within conservation or represent a substantial positive or negative step-change with global or regional extents. For example, new sources of hydrogen fuel and changes in deep-sea currents may have profound impacts on marine and terrestrial ecosystems. Technological advances that may be positive include benchtop DNA printers and the industrialisation of approaches that can create high-protein food from air, potentially reducing the pressure on land for food production.


Subject(s)
Biodiversity , Ecosystem , Conservation of Natural Resources , Forecasting , Food
2.
Trends Ecol Evol ; 38(1): 96-107, 2023 01.
Article in English | MEDLINE | ID: mdl-36460563

ABSTRACT

We present the results of our 14th horizon scan of issues we expect to influence biological conservation in the future. From an initial set of 102 topics, our global panel of 30 scientists and practitioners identified 15 issues we consider most urgent for societies worldwide to address. Issues are novel within biological conservation or represent a substantial positive or negative step change at global or regional scales. Issues such as submerged artificial light fisheries and accelerating upper ocean currents could have profound negative impacts on marine or coastal ecosystems. We also identified potentially positive technological advances, including energy production and storage, improved fertilisation methods, and expansion of biodegradable materials. If effectively managed, these technologies could realise future benefits for biological diversity.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Forecasting , Fisheries
3.
Nature ; 605(7910): 490-496, 2022 05.
Article in English | MEDLINE | ID: mdl-35477762

ABSTRACT

As the human population and demand for food grow1, the ocean will be called on to provide increasing amounts of seafood. Although fisheries reforms and advances in offshore aquaculture (hereafter 'mariculture') could increase production2, the true future of seafood depends on human responses to climate change3. Here we investigated whether coordinated reforms in fisheries and mariculture could increase seafood production per capita under climate change. We find that climate-adaptive fisheries reforms will be necessary but insufficient to maintain global seafood production per capita, even with aggressive reductions in greenhouse-gas emissions. However, the potential for sustainable mariculture to increase seafood per capita is vast and could increase seafood production per capita under all but the most severe emissions scenario. These increases are contingent on fisheries reforms, continued advances in feed technology and the establishment of effective mariculture governance and best practices. Furthermore, dramatically curbing emissions is essential for reducing inequities, increasing reform efficacy and mitigating risks unaccounted for in our analysis. Although climate change will challenge the ocean's ability to meet growing food demands, the ocean could produce more food than it does currently through swift and ambitious action to reduce emissions, reform capture fisheries and expand sustainable mariculture operations.


Subject(s)
Climate Change , Fisheries , Aquaculture , Humans , Oceans and Seas , Seafood
4.
Trends Ecol Evol ; 37(1): 95-104, 2022 01.
Article in English | MEDLINE | ID: mdl-34809998

ABSTRACT

We present the results of our 13th annual horizon scan of issues likely to impact on biodiversity conservation. Issues are either novel within the biological conservation sector or could cause a substantial step-change in impact, either globally or regionally. Our global panel of 26 scientists and practitioners identified 15 issues that we believe to represent the highest priorities for tracking and action. Many of the issues we identified, including the impact of satellite megaconstellations and the use of long-distance wireless energy transfer, have both elements of threats and emerging opportunities. A recent state-sponsored application to commence deep-sea mining represents a significant step-change in impact. We hope that this horizon scan will increase research and policy attention on the highlighted issues.


Subject(s)
Biodiversity , Conservation of Natural Resources , Global Health/trends , Animals , Policy
5.
Trends Ecol Evol ; 36(1): 87-97, 2021 01.
Article in English | MEDLINE | ID: mdl-33213887

ABSTRACT

We present the results from our 12th annual horizon scan of issues likely to impact biological conservation in the future. From a list of 97 topics, our global panel of 25 scientists and practitioners identified the top 15 issues that we believe society may urgently need to address. These issues are either novel in the biological conservation sector or represent a substantial positive or negative step-change in impact at global or regional level. Six issues, such as coral reef deoxygenation and changes in polar coastal productivity, affect marine or coastal ecosystems and seven relate to human and ecosystem-level responses to climate change. Identification of potential forthcoming issues for biological conservation may enable increased preparedness by researchers, practitioners, and decision-makers.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Climate Change , Coral Reefs , Forecasting , Humans
6.
Science ; 369(6510): 1455-1461, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32703909

ABSTRACT

Plastic pollution is a pervasive and growing problem. To estimate the effectiveness of interventions to reduce plastic pollution, we modeled stocks and flows of municipal solid waste and four sources of microplastics through the global plastic system for five scenarios between 2016 and 2040. Implementing all feasible interventions reduced plastic pollution by 40% from 2016 rates and 78% relative to "business as usual" in 2040. Even with immediate and concerted action, 710 million metric tons of plastic waste cumulatively entered aquatic and terrestrial ecosystems. To avoid a massive build-up of plastic in the environment, coordinated global action is urgently needed to reduce plastic consumption; increase rates of reuse, waste collection, and recycling; expand safe disposal systems; and accelerate innovation in the plastic value chain.


Subject(s)
Environmental Pollutants , Environmental Pollution/prevention & control , Plastics , Recycling , Models, Theoretical
7.
Ecology ; 95(2): 286-97, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24669723

ABSTRACT

Many terrestrial and marine systems are open to immigration. As such, the delivery of reproductive propagules should play a substantial role in determining local diversity in many systems. Here we present the results of a two-year experimental manipulation of subtidal flow regimes and show that flow has a strong positive effect on the assembly and maintenance of epifaunal invertebrate diversity by reducing recruitment limitation in two biogeographic regions. At two sites each in Alaska and Maine, USA, we experimentally manipulated flow speeds and measured the diversity of communities assembling through time and on recruitment panels scraped clean regularly. At all sites, the species richness of established communities, and the richness of recruitment into established communities and onto empty plates was >25% higher in enhanced flow than in control flow treatments. These effects were consistent for two years, and community diversity remained higher despite 30% higher species loss in enhanced flow treatments. Because communities remained open to immigration throughout the experiment, the data suggest that the diversity of epifaunal communities is strongly limited by recruitment and that supply-side effects on diversity in natural communities are strong. The positive effect of flow on diversity through a decrease in recruitment limitation was robust across scale, biogeographic region, and flow velocities and was consistent in magnitude in communities and on recruitment plates. Consequently, the data strongly suggest that the positive effects of flow on epifaunal diversity are persistent, can operate without diversity-enhancing positive feedback mechanisms, and are driven by increases in propagule delivery. Thus flow plays a large role in establishing and maintaining epifaunal diversity by mediating the delivery of propagules necessary to colonize a patch or to replace species within communities. Although our data do not preclude effects of interspecific interactions, they strongly suggest that flow plays a large and essentially untested role in determining the diversity of benthic marine communities, and they imply that flow is a key mechanism driving recruitment limitation in diverse aquatic systems.


Subject(s)
Biodiversity , Geologic Sediments , Invertebrates/physiology , Oceans and Seas , Animals , Time Factors , Water Movements
8.
Ecol Lett ; 14(1): 63-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21078033

ABSTRACT

In aquatic ecosystems, water flow mediates the delivery of reproductive propagules, competition and predation, each of which may have contrasting effects on biodiversity. Here, we show that water flow has a net positive effect on the biodiversity of benthic invertebrate communities in three biogeographic regions. In Palau and Alaska, flow velocity predicted 55-91% of the variance in species richness in natural communities. In experimental communities in Alaska and Maine, enhanced water flow treatments resulted in higher levels of species density (+56%) and richness (+74%), which were predicted by the abundance of locally rare species. Additionally, the richness of recruitment was higher in experimentally enhanced flows (+46%). Thus, the data suggest that flow drives diversity by mediating the delivery of rare species in multiple biogeographic regions. Consequently, flow velocity should be included in future developments of diversity theory and conservation strategy.


Subject(s)
Aquatic Organisms/growth & development , Biodiversity , Water Movements , Alaska , Animals , Invertebrates , Maine , Palau
9.
Nature ; 440(7088): 1186-9, 2006 Apr 27.
Article in English | MEDLINE | ID: mdl-16641995

ABSTRACT

Mass coral bleaching events caused by elevated seawater temperatures have resulted in extensive coral mortality throughout the tropics over the past few decades. With continued global warming, bleaching events are predicted to increase in frequency and severity, causing up to 60% coral mortality globally within the next few decades. Although some corals are able to recover and to survive bleaching, the mechanisms underlying such resilience are poorly understood. Here we show that the coral host has a significant role in recovery and resilience. Bleached and recovering Montipora capitata (branching) corals met more than 100% of their daily metabolic energy requirements by markedly increasing their feeding rates and CHAR (per cent contribution of heterotrophically acquired carbon to daily animal respiration), whereas Porites compressa (branching) and Porites lobata (mounding) corals did not. These findings suggest that coral species with high-CHAR capability during bleaching and recovery, irrespective of morphology, will be more resilient to bleaching events over the long term, could become the dominant coral species on reefs, and may help to safeguard affected reefs from potential local and global extinction.


Subject(s)
Anthozoa/physiology , Biodiversity , Greenhouse Effect , Animals , Anthozoa/classification , Anthozoa/metabolism , Biomass , Carbon/metabolism , Cell Respiration , Chlorophyll/metabolism , Chlorophyll A , Eating , Energy Metabolism , Photosynthesis , Seawater , Species Specificity , Survival Rate , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...