Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(7): 1737-1740, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560850

ABSTRACT

Inference of joule-class THz radiation sources from microchannel targets driven with hundreds of joule, picosecond lasers is reported. THz sources of this magnitude are useful for nonlinear pumping of matter and for charged-particle acceleration and manipulation. Microchannel targets demonstrate increased laser-THz conversion efficiency compared to planar foil targets, with laser energy to THz energy conversion up to ∼0.9% in the best cases.

2.
Phys Rev Lett ; 132(9): 095101, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38489653

ABSTRACT

Electrostatic waves play a critical role in nearly every branch of plasma physics from fusion to advanced accelerators, to astro, solar, and ionospheric physics. The properties of planar electrostatic waves are fully determined by the plasma conditions, such as density, temperature, ionization state, or details of the distribution functions. Here we demonstrate that electrostatic wave packets structured with space-time correlations can have properties that are independent of the plasma conditions. For instance, an appropriately structured electrostatic wave packet can travel at any group velocity, even backward with respect to its phase fronts, while maintaining a localized energy density. These linear, propagation-invariant wave packets can be constructed with or without orbital angular momentum by superposing natural modes of the plasma and can be ponderomotively excited by space-time structured laser pulses like the flying focus.

3.
Opt Express ; 32(1): 576-585, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175083

ABSTRACT

Flying-focus pulses promise to revolutionize laser-driven secondary sources by decoupling the trajectory of the peak intensity from the native group velocity of the medium over distances much longer than a Rayleigh range. Previous demonstrations of the flying focus have either produced an uncontrolled trajectory or a trajectory that is engineered using chromatic methods that limit the duration of the peak intensity to picosecond scales. Here we demonstrate a controllable ultrabroadband flying focus using a nearly achromatic axiparabola-echelon pair. Spectral interferometry using an ultrabroadband superluminescent diode was used to measure designed super- and subluminal flying-focus trajectories and the effective temporal pulse duration as inferred from the measured spectral phase. The measurements demonstrate that a nearly transform- and diffraction-limited moving focus can be created over a centimeter-scale-an extended focal region more than 50 Rayleigh ranges in length. This ultrabroadband flying-focus and the novel axiparabola-echelon configuration used to produce it are ideally suited for applications and scalable to >100 TW peak powers.

4.
Opt Express ; 31(19): 31354-31368, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710657

ABSTRACT

"Flying focus" techniques produce laser pulses with dynamic focal points that travel distances much greater than a Rayleigh length. The implementation of these techniques in laser-based applications requires the design of optical configurations that can both extend the focal range and structure the radial group delay. This article describes a method for designing optical configurations that produce ultrashort flying focus pulses with programmable-trajectory focal points. The method is illustrated by several examples that employ an axiparabola for extending the focal range and either a reflective echelon or a deformable mirror-spatial light modulator pair for structuring the radial group delay. The latter configuration enables rapid exploration and optimization of flying foci, which could be ideal for experiments.

5.
Phys Rev Lett ; 130(15): 159902, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37115903

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.124.134802.

6.
Phys Rev E ; 106(5-2): 055204, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559374

ABSTRACT

Target preheat by superthermal electrons from laser-plasma instabilities is a major obstacle to achieving thermonuclear ignition via direct-drive inertial confinement fusion at the National Ignition Facility (NIF). Polar-direct-drive surrogate plastic implosion experiments were performed on the NIF to quantify preheat levels at an ignition-relevant scale and develop mitigation strategies. The experiments were used to infer the hot-electron temperature, energy fraction, and divergence, and to directly measure the spatial hot-electron energy deposition profile inside the imploding shell. Silicon layers buried in the ablator are shown to mitigate the growth of laser-plasma instabilities and reduce preheat, providing a promising path forward for ignition designs at an on-target intensity of about 10^{15}W/cm^{2}.

7.
Phys Rev Lett ; 129(11): 115002, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36154407

ABSTRACT

Measurements were made of the return current instability growth rate, demonstrating its concurrence with nonlocal transport. Thomson scattering was used to measure a maximum growth rate of 5.1×10^{9} Hz, which was 3 times less than classical Spitzer-Härm theory predicts. The measured plasma conditions indicate the heat flux was nonlocal, and Vlasov-Fokker-Planck simulations that account for nonlocality reproduce the measured growth rates. Furthermore, the threshold for the return current instability was measured (δ_{T}=0.017±0.002) to be in good agreement with previous theoretical models.

8.
Phys Rev E ; 105(6-2): 065201, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35854579

ABSTRACT

In nonlinear Thomson scattering, a relativistic electron reradiates the photons of a laser pulse, converting optical light to x rays or beyond. While this extreme frequency conversion offers a promising source for probing high-energy-density materials and driving uncharted regimes of nonlinear quantum electrodynamics, conventional nonlinear Thomson scattering has inherent trade-offs in its scaling with laser intensity. Here we discover that the ponderomotive control afforded by spatiotemporal pulse shaping enables regimes of nonlinear Thomson scattering that substantially enhance the scaling of the radiated power, emission angle, and frequency with laser intensity. By appropriately setting the velocity of the intensity peak, a spatiotemporally shaped pulse can increase the power radiated by orders of magnitude. The enhanced scaling with laser intensity allows for operation at significantly lower electron energies or intensities.

9.
Phys Rev E ; 105(6): L063201, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35854618

ABSTRACT

The independent-hot-spot model is used to develop an analytic formulation for multibeam laser-plasma instabilities in inhomogeneous plasmas. The model is applied to the absolute two-plasmon-decay instability and shows good agreement with simulations and experiments. The success of the model indicates the emergence of single-speckle behavior for sufficiently large speckles sizes.

10.
Phys Rev E ; 103(6-1): 063208, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271736

ABSTRACT

As an alternative inertial confinement fusion scheme, shock ignition requires a strong converging shock driven by a high-intensity laser pulse to ignite a precompressed fusion capsule. Understanding nonlinear laser-plasma instabilities is crucial to assess and improve the laser-shock energy coupling. Recent experiments conducted on the OMEGA EP laser facility have demonstrated that such instabilities can ∼100% deplete the first 0.5 ns of the high-intensity laser. Analyses of the observed laser-generated blast wave suggest that this pump-depletion starts at ∼0.02 critical density and progresses to 0.1-0.2 critical density, which is also confirmed by the time-resolved stimulated Raman backscattering spectra. The pump-depletion dynamics can be explained by the breaking of ion-acoustic waves in stimulated Brillouin scattering. Such pump depletion would inhibit the collisional laser energy absorption but may benefit the generation of hot electrons with moderate temperatures for electron shock ignition [Phys. Rev. Lett. 119, 195001 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.195001].

11.
Phys Rev Lett ; 127(1): 015001, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34270287

ABSTRACT

Electron velocity distribution functions driven by inverse bremsstrahlung heating are measured to be non-Maxwellian using a novel angularly resolved Thomson-scattering instrument and the corresponding reduction of electrons at slow velocities results in a ∼40% measured reduction in inverse bremsstrahlung absorption. The distribution functions are measured to be super-Gaussian in the bulk (v/v_{th}<3) and Maxwellian in the tail (v/v_{th}>3) when the laser heating rate dominates over the electron-electron thermalization rate. Simulations with the particle code quartz show the shape of the tail is dictated by the uniformity of the laser heating.

12.
Sci Rep ; 11(1): 7498, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33820945

ABSTRACT

Laser-plasma accelerators (LPAs) driven by picosecond-scale, kilojoule-class lasers can generate particle beams and x-ray sources that could be utilized in experiments driven by multi-kilojoule, high-energy-density science (HEDS) drivers such as the OMEGA laser at the Laboratory for Laser Energetics (LLE) or the National Ignition Facility at Lawrence Livermore National Laboratory. This paper reports on the development of the first LPA driven by a short-pulse, kilojoule-class laser (OMEGA EP) connected to a multi-kilojoule HEDS driver (OMEGA). In experiments, electron beams were produced with electron energies greater than 200 MeV, divergences as low as 32 mrad, charge greater than 700 nC, and conversion efficiencies from laser energy to electron energy up to 11%. The electron beam charge scales with both the normalized vector potential and plasma density. These electron beams show promise as a method to generate MeV-class radiography sources and improved-flux broadband x-ray sources at HEDS drivers.

13.
Phys Rev Lett ; 126(7): 075002, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33666470

ABSTRACT

We measure cross-beam energy transfer (CBET) saturation by ion heating in a gas-jet plasma characterized using Thomson scattering. A wavelength-tunable ultraviolet (UV) probe laser beam interacts with four intense UV pump beams to drive large-amplitude ion-acoustic waves. For the highest-intensity interactions, the power transfer to the probe laser drops, demonstrating ion-acoustic wave saturation. Over this time, the ion temperature is measured to increase by a factor of 7 during the 500-ps interaction. Particle-in-cell simulations show ion trapping and a subsequent ion heating consistent with measurements. Linear kinetic CBET models are found to agree well with the observed energy transfer when the measured plasma conditions are used.

14.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200011, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33280561

ABSTRACT

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

15.
Phys Rev E ; 102(4-1): 043207, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212704

ABSTRACT

A planar laser pulse propagating in vacuum can exhibit an extremely large ponderomotive force. This force, however, cannot impart net energy to an electron: As the pulse overtakes the electron, the initial impulse from its rising edge is completely undone by an equal and opposite impulse from its trailing edge. Here we show that planarlike "flying focus" pulses can break this symmetry, imparting relativistic energies to electrons. The intensity peak of a flying focus-a moving focal point resulting from a chirped laser pulse focused by a chromatic lens-can travel at any subluminal velocity, forward or backward. As a result, an electron can gain enough momentum in the rising edge of the intensity peak to outrun and avoid the trailing edge. Accelerating the intensity peak can further boost the momentum gain. Theory and simulations demonstrate that these dynamic intensity peaks can backwards accelerate electrons to the MeV energies required for radiation and electron diffraction probes of high energy density materials.

16.
Phys Rev E ; 102(2-1): 023205, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32942510

ABSTRACT

The success of direct laser-driven inertial confinement fusion (ICF) relies critically on the efficient coupling of laser light to plasma. At ignition scale, the absolute stimulated Raman scattering (SRS) instability can severely inhibit this coupling by redirecting and strongly depleting laser light. This article describes a new dynamic saturation regime of the absolute SRS instability near one-quarter of the critical density. The saturation occurs when spatiotemporal ion-acoustic fluctuations in the plasma density detune the instability resonance. The dynamic saturation mitigates the strong depletion of laser light and enhances its transmission through the instability region, explaining the coupling of laser light to ICF targets at higher plasma densities.

17.
Phys Rev E ; 101(4-1): 043214, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32422790

ABSTRACT

Multibeam absolute instability thresholds for stimulated Raman scattering (SRS) and two-plasmon decay (TPD) are calculated in three dimensions for conditions relevant to direct-drive inertial confinement fusion experiments on the OMEGA laser and at the National Ignition Facility (NIF). Although multibeam effects are found to be significant for both instabilities, SRS is found to have less efficient multibeam coupling than TPD. The results are consistent with the observation of a TPD-dominated regime on the OMEGA laser and a SRS-dominated regime on the NIF despite the single-beam SRS threshold being lower than the single-beam TPD threshold on both facilities. The minimum instability threshold for NIF plasma parameters occurs for SRS near quarter-critical densities with a shared electromagnetic wave propagating along the beam axis.

18.
Phys Rev Lett ; 124(18): 185001, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32441948

ABSTRACT

Radiation-hydrodynamic simulations of directly driven fusion experiments at the Omega Laser Facility predict absorption accurately when targets are driven at low overlapped laser intensity. Discrepancies appear at increased intensity, however, with higher-than-expected laser absorption on target. Strong correlations with signatures of the two-plasmon decay (TPD) instability-including half-harmonic and hard-x-ray emission-indicate that TPD is responsible for this anomalous absorption. Scattered light data suggest that up to ≈30% of the laser power reaching quarter-critical density can be absorbed locally when the TPD threshold is exceeded. A scaling of absorption versus TPD threshold parameter was empirically determined and validated using the laser-plasma simulation environment code.

19.
Phys Rev Lett ; 124(13): 134802, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32302161

ABSTRACT

Laser wakefield accelerators (LWFAs) produce extremely high gradients enabling compact accelerators and radiation sources but face design limitations, such as dephasing, occurring when trapped electrons outrun the accelerating phase of the wakefield. Here we combine spherical aberration with a novel cylindrically symmetric echelon optic to spatiotemporally structure an ultrashort, high-intensity laser pulse that can overcome dephasing by propagating at any velocity over any distance. The ponderomotive force of the spatiotemporally shaped pulse can drive a wakefield with a phase velocity equal to the speed of light in vacuum, preventing trapped electrons from outrunning the wake. Simulations in the linear regime and scaling laws in the bubble regime illustrate that this dephasingless LWFA can accelerate electrons to high energies in much shorter distances than a traditional LWFA-a single 4.5 m stage can accelerate electrons to TeV energies without the need for guiding structures.

20.
Phys Rev Lett ; 124(2): 025001, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004052

ABSTRACT

The picosecond evolution of non-Maxwellian electron distribution functions was measured in a laser-produced plasma using collective electron plasma wave Thomson scattering. During the laser heating, the distribution was measured to be approximately super-Gaussian due to inverse bremsstrahlung heating. After the heating laser turned off, collisional ionization caused further modification to the distribution function while increasing electron density and decreasing temperature. Electron distribution functions were determined using Vlasov-Fokker-Planck simulations including atomic kinetics.

SELECTION OF CITATIONS
SEARCH DETAIL
...