Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 23286, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857840

ABSTRACT

The reproduction number of an infectious disease, such as CoViD-19, can be described through a modified version of the susceptible-infected-recovered (SIR) model with time-dependent contact rate, where mobility data are used as proxy of average movement trends and interpersonal distances. We introduce a theoretical framework to explain and predict changes in the reproduction number of SARS-CoV-2 in terms of aggregated individual mobility and interpersonal proximity (alongside other epidemiological and environmental variables) during and after the lockdown period. We use an infection-age structured model described by a renewal equation. The model predicts the evolution of the reproduction number up to a week ahead of well-established estimates used in the literature. We show how lockdown policies, via reduction of proximity and mobility, reduce the impact of CoViD-19 and mitigate the risk of disease resurgence. We validate our theoretical framework using data from Google, Voxel51, Unacast, The CoViD-19 Mobility Data Network, and Analisi Distribuzione Aiuti.


Subject(s)
Basic Reproduction Number/statistics & numerical data , COVID-19/epidemiology , COVID-19/transmission , Movement , Contact Tracing , Humans , Italy/epidemiology , Models, Theoretical , Physical Distancing , Quarantine , SARS-CoV-2 , United States/epidemiology
2.
Chaos Solitons Fractals ; 146: 110854, 2021 May.
Article in English | MEDLINE | ID: mdl-33746372

ABSTRACT

Estimation of the prevalence of undocumented SARS-CoV-2 infections is critical for understanding the overall impact of CoViD-19, and for implementing effective public policy intervention strategies. We discuss a simple yet effective approach to estimate the true number of people infected by SARS-CoV-2, using raw epidemiological data reported by official health institutions in the largest EU countries and the USA.

3.
Sci Rep ; 10(1): 18630, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122692

ABSTRACT

Ecological connectivity is one of the most important processes that shape marine populations and ecosystems, determining their distribution, persistence, and productivity. Here we use the synergy of Lagrangian back-trajectories, otolith-derived ages of larvae, and satellite-based chlorophyll-a to identify spawning areas of European anchovy from ichthyoplanktonic data, collected in the Strait of Sicily (Central Mediterranean Sea), i.e., the crucial channel in between the European and African continents. We obtain new evidence of ecosystem connectivity between North Africa and recruitment regions off the southern European coasts. We assess this result by using bio-energetic modeling, which predicts species-specific responses to environmental changes by producing quantitative information on functional traits. Our work gives support to a collaborative and harmonized use of Geographical Sub-Areas, currently identified by the General Fisheries Commission for the Mediterranean. It also confirms the need to incorporate climate and environmental variability effects into future marine resources management plans, strategies, and directives.


Subject(s)
Fishes/physiology , Models, Biological , Animals , Climate , Ecosystem , Environment , Fishes/growth & development , Larva/growth & development , Mediterranean Sea , Population Dynamics
4.
Sci Rep ; 7: 46291, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28397797

ABSTRACT

The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.

5.
Sci Rep ; 6: 23983, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27044321

ABSTRACT

Distribution shifts are a common adaptive response of marine ectotherms to climate change but the pace of redistribution depends on species-specific traits that may promote or hamper expansion to northern habitats. Here we show that recently, the loggerhead turtle (Caretta caretta) has begun to nest steadily beyond the northern edge of the species' range in the Mediterranean basin. This range expansion is associated with a significant warming of spring and summer sea surface temperature (SST) that offers a wider thermal window suitable for nesting. However, we found that post-hatchlings departing from this location experience low winter SST that may affect their survival and thus hamper the stabilization of the site by self-recruitment. The inspection of the Intergovernmental Panel on Climate Change model projections and observational data on SST trends shows that, despite the annual warming for this century, winter SST show little or no trends. Therefore, thermal constraints during the early developmental phase may limit the chance of population growth at this location also in the near future, despite increasingly favourable conditions at the nesting sites. Quantifying and understanding the interplay between dispersal and environmental changes at all life stages is critical for predicting ectotherm range expansion with climate warming.


Subject(s)
Global Warming , Oceans and Seas , Seasons , Turtles/physiology , Animals , Climate , DNA, Mitochondrial/genetics , Data Collection , Ecosystem , Female , Geography , Models, Theoretical , Population Growth , Temperature
6.
Article in English | MEDLINE | ID: mdl-25974560

ABSTRACT

When applied to strongly nonlinear chaotic dynamics the extended Kalman filter (EKF) is prone to divergence due to the difficulty of correctly forecasting the forecast error probability density function. In operational forecasting applications ensemble Kalman filters circumvent this problem with empirical procedures such as covariance inflation. This paper presents an extension of the EKF that includes nonlinear terms in the evolution of the forecast error estimate. This is achieved starting from a particular square-root implementation of the EKF with assimilation confined in the unstable subspace (EKF-AUS), that is, the span of the Lyapunov vectors with non-negative exponents. When the error evolution is nonlinear, the space where it is confined is no more restricted to the unstable and neutral subspace causing filter divergence. The algorithm presented here, denominated EKF-AUS-NL, includes the nonlinear terms in the error dynamics: These result from the nonlinear interaction among the leading Lyapunov vectors and account for all directions where the error growth may take place. Numerical results show that with the nonlinear terms included, filter divergence can be avoided. We test the algorithm on the Lorenz96 model, showing very promising results.

7.
PLoS One ; 10(4): e0123213, 2015.
Article in English | MEDLINE | ID: mdl-25915489

ABSTRACT

Knowledge of the link between ocean hydrodynamics and distribution of small pelagic fish species is fundamental for the sustainable management of fishery resources. Both commercial and scientific communities are indeed seeking to provide services that could "connect the dots" among in situ and remote observations, numerical ocean modelling, and fisheries. In the Mediterranean Sea and, in particular, in the Sicily Channel the reproductive strategy of the European Anchovy (Engraulis encrasicolus) is strongly influenced by the oceanographic patterns, which are often visible in sea surface temperature satellite data. Based on these experimental evidences, we propose here a more general approach where the role of ocean currents, wind effects, and mesoscale activity are tied together. To investigate how these features affect anchovy larvae distribution, we pair ichthyoplankton observations to a wide remote sensing data set, and to Lagrangian numerical simulations for larval transport. Our analysis shows that while the wind-induced coastal current is able to transport anchovy larvae from spawning areas to the recruiting area off the Sicilian south-eastern tip, significant cross-shore transport due to the combination of strong northwesterly mistral winds and topographic effects delivers larvae away from the coastal conveyor belt. We then use a potential vorticity approach to describe the occurrence of larvae cross-shore transport. We conclude that monitoring and quantifying the upwelling on the southern Sicilian coast during the spawning season allows to estimate the cross-shore transport of larvae and the consequent decrease of individuals within the recruiting area.


Subject(s)
Fishes/growth & development , Larva/growth & development , Animals , Eggs , Fisheries , Hydrodynamics , Mediterranean Sea , Population Dynamics , Seasons , Sicily , Temperature
8.
Article in English | MEDLINE | ID: mdl-24032895

ABSTRACT

Valuable information for estimating the traffic flow is obtained with current GPS technology by monitoring position and velocity of vehicles. In this paper, we present a proof of concept study that shows how the traffic state can be estimated using only partial and noisy data by assimilating them in a dynamical model. Our approach is based on a data assimilation algorithm, developed by the authors for chaotic geophysical models, designed to be equivalent but computationally much less demanding than the traditional extended Kalman filter. Here we show that the algorithm is even more efficient if the system is not chaotic and demonstrate by numerical experiments that an accurate reconstruction of the complete traffic state can be obtained at a very low computational cost by monitoring only a small percentage of vehicles.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 1): 041102, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21599110

ABSTRACT

We present an analytical expression for the first return time (FRT) probability density function of a stationary correlated signal. Precisely, we start by considering a stationary discrete-time Ornstein-Uhlenbeck (OU) process with exponential decaying correlation function. The first return time distribution for this process is derived by adopting a well-known formalism typically used in the study of the FRT statistics for nonstationary diffusive processes. Then, by a subordination approach, we treat the case of a stationary process with power-law tail correlation function and diverging correlation time. We numerically test our findings, obtaining in both cases a good agreement with the analytical results. We notice that neither in the standard OU nor in the subordinated case a simple form of waiting time statistics, like stretched-exponential or similar, can be obtained while it is apparent that long time transient may shadow the final asymptotic behavior.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 1): 051103, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18233619

ABSTRACT

A simplified version of a classical problem in thermodynamics--the adiabatic piston--is discussed in the framework of kinetic theory. We consider the limit of gases whose relaxation time is extremely fast so that the gases contained in the left and right chambers of the piston are always in equilibrium (that is, the molecules are uniformly distributed and their velocities obey the Maxwell-Boltzmann distribution) after any collision with the piston. Then by using kinetic theory we derive the collision statistics, from which we obtain a set of ordinary differential equations for the evolution of the macroscopic observables (namely, the piston average velocity and position, the velocity variance, and the temperatures of the two compartments). The dynamics of these equations is compared with simulations of an ideal gas and a microscopic model of a gas devised to verify the assumptions used in the derivation. We show that the equations predict an evolution for the macroscopic variables that catches the basic features of the problem. The results here presented recover those derived, using a different approach, by Gruber, Pache, and Lesne [J. Stat. Phys. 108, 669 (2002); Gruber, Pache, and Lesne,J. Stat. Phys.112, 1177 (2003)].

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(6 Pt 2): 066109, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16089822

ABSTRACT

We study a two-state statistical process with a non-Poisson distribution of sojourn times. In accordance with earlier work, we find that this process is characterized by aging and we study three different ways to define the correlation function of arbitrary age of the corresponding dichotomous fluctuation. These three methods yield exact expressions, thus coinciding with the recent result by Godrèche and Luck [J. Stat. Phys. 104, 489 (2001)]. Actually, non-Poisson statistics yields infinite memory at the probability level, thereby breaking any form of Markovian approximation, including the one adopted herein, to find an approximated analytical formula. For this reason, we check the accuracy of this approximated formula by comparing it with the numerical treatment of the second of the three exact expressions. We find that, although not exact, a simple analytical expression for the correlation function of arbitrary age is very accurate. We establish a connection between the correlation function and a generalized master equation of the same age. Thus this formalism, related to models used in glassy materials, allows us to illustrate an approach to the statistical treatment of blinking quantum dots, bypassing the limitations of the conventional Liouville treatment.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(1 Pt 2): 016220, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16090079

ABSTRACT

We discuss the properties making a deterministic algorithm suitable to generate a pseudo random sequence of numbers: high value of Kolmogorov-Sinai entropy, high dimensionality of the parent dynamical system, and very large period of the generated sequence. We propose the multidimensional Anosov symplectic (cat) map as a pseudo random number generator. We show what chaotic features of this map are useful for generating pseudo random numbers and investigate numerically which of them survive in the discrete state version of the map. Testing and comparisons with other generators are performed.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(1 Pt 2): 016118, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15697669

ABSTRACT

We discuss the connection between the Kolmogorov-Sinai entropy hKS and the production rate of the coarse-grained Gibbs entropy rG. Detailed numerical computations show that the (often-accepted) identification of the two quantities does not hold in systems with intermittent behavior and/or very different characteristic times and in systems presenting pseudochaos. The basic reason for this is in the asymptotic (with respect to time) nature of hKS, while rG is a quantity related to short-time features of a system.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(4 Pt 2): 046118, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15600471

ABSTRACT

We study a two-state symmetric noise, with a given waiting time distribution psi (tau) , and focus our attention on the connection between the four-time and two-time correlation functions. The transition of psi (tau) from the exponential to the nonexponential condition yields the breakdown of the usual factorization condition of high-order correlation functions, as well as the birth of aging effects. We discuss the subtle connections between these two properties and establish the condition that the Liouville-like approach has to satisfy in order to produce a correct description of the resulting diffusion process.

15.
Phys Rev Lett ; 93(5): 050601, 2004 Jul 30.
Article in English | MEDLINE | ID: mdl-15323679

ABSTRACT

This Letter addresses the challenging problems posed to the Kubo-Anderson (KA) theory by the discovery of intermittent resonant fluorescence with a nonexponential distribution of waiting times. We show how to extend the KA theory from aged to aging systems, aging for a very extended time period or even forever, being a crucial consequence of non-Poisson statistics.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(5 Pt 2): 056123, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14682862

ABSTRACT

We discuss the problem of the equivalence between continuous-time random walk (CTRW) and generalized master equation (GME). The walker, making instantaneous jumps from one site of the lattice to another, resides in each site for extended times. The sojourn times have a distribution density psi(t) that is assumed to be an inverse power law with the power index micro. We assume that the Onsager principle is fulfilled, and we use this assumption to establish a complete equivalence between GME and the Montroll-Weiss CTRW. We prove that this equivalence is confined to the case where psi(t) is an exponential. We argue that is so because the Montroll-Weiss CTRW, as recently proved by Barkai [E. Barkai, Phys. Rev. Lett. 90, 104101 (2003)], is nonstationary, thereby implying aging, while the Onsager principle is valid only in the case of fully aged systems. The case of a Poisson distribution of sojourn times is the only one with no aging associated to it, and consequently with no need to establish special initial conditions to fulfill the Onsager principle. We consider the case of a dichotomous fluctuation, and we prove that the Onsager principle is fulfilled for any form of regression to equilibrium provided that the stationary condition holds true. We set the stationary condition on both the CTRW and the GME, thereby creating a condition of total equivalence, regardless of the nature of the waiting-time distribution. As a consequence of this procedure we create a GME that is a bona fide master equation, in spite of being non-Markov. We note that the memory kernel of the GME affords information on the interaction between system of interest and its bath. The Poisson case yields a bath with infinitely fast fluctuations. We argue that departing from the Poisson form has the effect of creating a condition of infinite memory and that these results might be useful to shed light on the problem of how to unravel non-Markov quantum master equations.

17.
Phys Rev Lett ; 90(18): 188501, 2003 May 09.
Article in English | MEDLINE | ID: mdl-12786049

ABSTRACT

We study the statistical properties of time distribution of seismicity in California by means of a new method of analysis, the diffusion entropy. We find that the distribution of time intervals between a large earthquake (the main shock of a given seismic sequence) and the next one does not obey Poisson statistics, as assumed by the current models. We prove that this distribution is an inverse power law with an exponent mu=2.06+/-0.01. We propose the long-range model, reproducing the main properties of the diffusion entropy and describing the seismic triggering mechanisms induced by large earthquakes.

SELECTION OF CITATIONS
SEARCH DETAIL
...