Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Growth Factors ; 32(6): 223-35, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25413948

ABSTRACT

EphA3 is expressed in solid tumors and leukemias and is an attractive target for the therapy. We have generated a panel of Humaneered® antibodies to the ligand-binding domain using a Fab epitope-focused library that has the same specificity as monoclonal antibody mIIIA4. A high-affinity antibody was selected that competes with the mIIIA4 antibody for binding to EphA3 and has an improved affinity of ∼1 nM. In order to generate an antibody with potent cell-killing activity the variable regions were assembled with human IgG1k constant regions and expressed in a Chinese hamster ovary (CHO) cell line deficient in fucosyl transferase. Non-fucosylated antibodies have been reported to have enhanced binding affinity for the IgG receptor CD16a (FcγRIIIa). The affinity of the antibody for recombinant CD16a was enhanced approximately 10-fold. This resulted in enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity against EphA3-expressing leukemic cells, providing a potent antibody for the evaluation as a therapeutic agent.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Affinity , Antibody-Dependent Cell Cytotoxicity , Receptor, EphA3/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , CHO Cells , Cricetinae , Cricetulus , Humans , Immunoglobulin Fc Fragments/immunology , Macaca mulatta , Molecular Sequence Data , Receptors, IgG/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology
2.
Cancer Res ; 74(16): 4470-81, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25125683

ABSTRACT

Eph receptor tyrosine kinases are critical for cell-cell communication during normal and oncogenic tissue patterning and tumor growth. Somatic mutation profiles of several cancer genomes suggest EphA3 as a tumor suppressor, but its oncogenic expression pattern and role in tumorigenesis remain largely undefined. Here, we report unexpected EphA3 overexpression within the microenvironment of a range of human cancers and mouse tumor xenografts where its activation inhibits tumor growth. EphA3 is found on mouse bone marrow-derived cells with mesenchymal and myeloid phenotypes, and activation of EphA3(+)/CD90(+)/Sca1(+) mesenchymal/stromal cells with an EphA3 agonist leads to cell contraction, cell-cell segregation, and apoptosis. Treatment of mice with an agonistic α-EphA3 antibody inhibits tumor growth by severely disrupting the integrity and function of newly formed tumor stroma and microvasculature. Our data define EphA3 as a novel target for selective ablation of the tumor microenvironment and demonstrate the potential of EphA3 agonists for anticancer therapy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Receptor Protein-Tyrosine Kinases/agonists , Receptor Protein-Tyrosine Kinases/biosynthesis , Receptor, EphA3/agonists , Receptor, EphA3/biosynthesis , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Transformation, Neoplastic , Disease Models, Animal , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Mice , Mice, Nude , Molecular Targeted Therapy , Receptor Protein-Tyrosine Kinases/immunology , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, EphA3/immunology , Receptor, EphA3/metabolism , Signal Transduction , Stromal Cells/drug effects , Stromal Cells/pathology , Tumor Microenvironment/drug effects
3.
J Allergy Clin Immunol ; 133(5): 1439-47, 1447.e1-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24530099

ABSTRACT

BACKGROUND: Although several novel agents are currently in clinical trials for eosinophilic disorders, none has demonstrated efficacy in reducing blood and tissue eosinophilia in all subjects. Additional approaches are clearly needed. OBJECTIVE: We sought to explore the potential of the human eosinophil surface receptor epidermal growth factor-like module containing mucin-like hormone receptor 1 (EMR1) as a therapeutic target for eosinophilic disorders. METHODS: EMR1 expression was assessed in blood and bone marrow specimens from eosinophilic and healthy subjects, cell lines, CD34(+) cells differentiated in vitro, and tissue biopsy specimens by using flow cytometry, quantitative PCR, and immunostaining. Eosinophil targeting by a novel, humanized, afucosylated anti-EMR1 IgG1 was evaluated in vitro by using a natural killer cell-mediated killing assay and in vivo in cynomolgus monkeys. RESULTS: Analysis of blood and bone marrow cells from healthy and eosinophilic donors and in vitro-differentiated CD34(+) cells confirmed restriction of human EMR1 surface and mRNA expression to mature eosinophils. Tissue eosinophils also expressed EMR1. Although EMR1 was highly expressed on eosinophils from all subjects, surface expression was negatively correlated with absolute eosinophil counts (r = -0.46, P < .001), and soluble plasma levels correlated positively with absolute eosinophil counts (r = 0.69, P < .001), suggesting modulation of EMR1 in vivo. Nevertheless, afucosylated anti-EMR1 mAb dramatically enhanced natural killer cell-mediated killing of eosinophils from healthy and eosinophilic donors and induced a rapid and sustained depletion of eosinophils in monkeys. CONCLUSION: EMR1 expression is restricted to mature blood and tissue eosinophils. Targeting of eosinophils with afucosylated anti-EMR1 antibody shows promise as a treatment for eosinophilic disorders.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacology , Eosinophilia/drug therapy , Eosinophils/immunology , Gene Expression Regulation/drug effects , Immunoglobulin G/pharmacology , Membrane Glycoproteins/immunology , Mucins/immunology , Receptors, G-Protein-Coupled/immunology , Antibodies, Monoclonal, Murine-Derived/immunology , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Calcium-Binding Proteins , Eosinophilia/immunology , Eosinophilia/pathology , Eosinophils/pathology , Female , Humans , Immunoglobulin G/immunology , K562 Cells , Male , Membrane Glycoproteins/antagonists & inhibitors , Mucins/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...