Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37628029

ABSTRACT

The absence of gluten proteins in sorghum allows for the production of baked goods that are suitable for celiacs. Previous studies have shown that the milling process affects the performance of sorghum flour in baked products, especially those that are gluten-free (GF). This study aimed to explore the effects of mill type (impact and roller) on flour properties and GF bread quality by assessing the technological quality, antioxidant activity, and mineral content of the bread. All particle populations of flour obtained via both millings presented a bimodal distribution, and the volume mean diameter (D 4,3) ranged from 431.6 µm to 561.6 µm. The partially refined milled flour obtained via polishing and impact milling produced bread with a soft crumb, fewer but larger alveoli in the crumb, and a structure that did not collapse during baking, showing the best performance in bread quality. In the in vitro bread digestibility assay, the total polyphenol content and antioxidant activity decreased during the digestion steps. High mineral (Cu, Fe, Mn, and Zn) contents were also found in a portion of the bread (120 g) made with whole sorghum flour; however, their potential bioavailability was reduced in the presence of a higher amount of bran.

2.
Plant Foods Hum Nutr ; 75(3): 326-336, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32474685

ABSTRACT

Sorghum is a major cereal crop with various agronomic advantages, contains health-promoting compounds and is gluten-free. There is a growing tendency to use sorghum in pasta and noodle formulations, which are among the most widely consumed products in the world, but its potential benefits in human diet are not being fully exploited. Here we review research carried out during the past few years on the use of sorghum as the main ingredient or as an additive in pasta and noodles, highlighting its properties and production technology. Pasta and noodles can be produced with 5 to 100% of sorghum at laboratory, pilot or industrial scale with suitable cooking and textural quality coupled with distinctive sensory attributes. Cooking loss shows minimum values of 0.85 and 1.9 g/100 g for pasta and noodles, respectively, and high water absorption (up to 345 g/100 g). The interesting nutritional profile of the products generally includes up to 45% resistant starch (RS) and phenolic compound content with high antioxidant activity. In addition, tannins decrease starch digestibility 15-20%, producing low glycemic index (GI) products (below 65). This is especially important for celiac people, offering them the alternative of gluten-free sorghum pasta and noodles.


Subject(s)
Sorghum , Cooking , Digestion , Edible Grain , Flour/analysis , Humans , Starch , Triticum
3.
Int J Biol Macromol ; 135: 521-529, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31150671

ABSTRACT

The aim of this work was to evaluate the impact of different chemical modification methods on starch from different botanical sources. Brown and white sorghum starch was isolated throughout a time saving process and avoiding the use of dangerous compounds. Brown and white sorghum and commercial cassava starch were treated using acetic acid, acetic anhydride and octanoyl chloride. Its chemical, morphological and thermal characterization was afterwards carried out. The modifications reduced amylose content and increased damaged starch. Both acetylation and acid treatment produced no significant changes in the size and shape of granules; yet, they increased superficial pores. SEM observations supported the results, indicating that octanoyl modification causes a partial destruction of the granule structure. Thus, particle size distribution changes significantly. Crystallinity degree decreased with all the modifications. However, the effect was more pronounced in octanoyl esterification. In general, modifications increase the water absorption of the native starch but no considerable effect was found over oil absorption, and gelatinization parameters were significantly altered as a result of modifications. Starch from these subtilized sources was successfully modified, which could arouse interest in its industrial production.


Subject(s)
Manihot/chemistry , Sorghum/chemistry , Starch/chemistry , Amylose/analysis , Esterification , Oils/chemistry , Particle Size , Pilot Projects , Temperature , Water/chemistry
4.
J Food Sci ; 82(9): 2085-2093, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28796286

ABSTRACT

Sorghum is an underutilized cereal in human food production, despite its flour being a potential gluten-free (GF) source in the development of several foods. Thus, the aim of the present investigation was to evaluate the effects and interactions of different ingredients on cooking quality and texture of GF pasta. Egg albumen (A), egg powder (E), xanthan gum (X), and pregelatinized corn starch (P) were used as ingredients, and Box-Behnken experimental design was applied to study the effects of these ingredients on pasta cooking behavior, color, and texture attributes. Responses were fitted to a second order polynomial equation, and multivariable optimization was performed using maximization of general desirability. Next, optimal formulations were validated, compared with two commercial gluten-free pastas by sensory evaluation, and finally, an industrial assay was carried out. Regression coefficients indicated that A and P improved cooking properties while A and E contributed the most to improving the pasta textural properties. As, X and P effects varied depending on the kind of sorghum flour used, the optimal formulations levels were different, but in both cases these models were satisfactory and capable of predicting responses. The industrial assay was carried out with white sorghum flour because it showed a higher acceptability in the sensory evaluation than brown sorghum flour pasta. This industrially made pasta resulted in slightly better cooking properties than the laboratory produced one, with the formulation adapting well to the conventional wheat pasta industrial process. Gluten-free sorghum pasta was produced, showing good cooking and textural properties and being a suitable option for gluten-sensitive individuals.


Subject(s)
Glutens/analysis , Sorghum/chemistry , Triticum/chemistry , Color , Cooking , Diet, Gluten-Free , Eggs/analysis , Flour/analysis , Food Handling , Humans , Starch/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...