Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Molecules ; 27(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35011432

ABSTRACT

The rising tide of antibacterial drug resistance has given rise to the virtual elimination of numerous erstwhile antibiotics, intensifying the urgent demand for novel agents. A number of drugs have been found to possess potent antimicrobial action during the past several years and have the potential to supplement or even replace the antibiotics. Many of these 'non-antibiotics', as they are referred to, belong to the widely used class of neuroleptics, the phenothiazines. Another chemically and pharmacologically related class is the thioxanthenes, differing in that the aromatic N of the central phenothiazine ring has been replaced by a C atom. Such "carbon-analogues" were primarily synthesized with the hope that these would be devoid of some of the toxic effects of phenothiazines. Intensive studies on syntheses, as well as chemical and pharmacological properties of thioxanthenes, were initiated in the late 1950s. Although a rather close parallelism with respect to structure activity relationships could be observed between phenothiazines and thioxanthenes; several thioxanthenes were synthesized in pharmaceutical industries and applied for human use as neuroleptics. Antibacterial activities of thioxanthenes came to be recognized in the early 1980s in Europe. During the following years, many of these drugs were found not only to be antibacterial agents but also to possess anti-mycobacterial, antiviral (including anti-HIV and anti-SARS-CoV-2) and anti-parasitic properties. Thus, this group of drugs, which has an inhibitory effect on the growth of a wide variety of microorganisms, needs to be explored for syntheses of novel antimicrobial agents. The purpose of this review is to summarize the neuroleptic and antimicrobial properties of this exciting group of bioactive molecules with a goal of identifying potential structures worthy of future exploration.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antipsychotic Agents/pharmacology , Bacteria/drug effects , Psychotic Disorders/drug therapy , Thioxanthenes/pharmacology , Animals , Humans , Microbiota
2.
Int Microbiol ; 18(1): 1-12, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26415662

ABSTRACT

Historically, multiplicity of actions in synthetic compounds is a rule rather than exception. The science of non-antibiotics evolved in this background. From the antimalarial and antitrypanosomial dye methylene blue, chemically similar compounds, the phenothiazines, were developed. The phenothiazines were first recognised for their antipsychotic properties, but soon after their antimicrobial functions came to be known and then such compounds were designated as non-antibiotics. The emergence of highly drug-resistant bacteria had initiated an urgent need to search for novel affordable compounds. Several phenothiazines awakened the interest among scientists to determine their antimycobacterial activity. Chlorpromazine, trifluoperazine, methdilazine and thioridazine were found to have distinct antitubercular action. Thioridazine took the lead as researchers repeatedly claimed its potentiality. Although thioridazine is known for its central nervous system and cardiotoxic side-effects, extensive and repeated in vitro and in vivo studies by several research groups revealed that a very small dose of thioridazine is required to kill tubercle bacilli inside macrophages in the lungs, where the bacteria try to remain and multiply silently. Such a small dose is devoid of its adverse side-effects. Recent studies have shown that the (-) thioridazine is a more active antimicrobial agent and devoid of the toxic side effects normally encountered. This review describes the possibilities of bringing down thioridazine and its (-) form to be combined with other antitubercular drugs to treat infections by drug-resistant strains of Mycobacterium tuberculosis and try to eradicate this deadly disease.


Subject(s)
Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Phenothiazines/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Antipsychotic Agents/therapeutic use , Chlorpromazine/therapeutic use , Humans , Mycobacterium tuberculosis/physiology , Thioridazine/therapeutic use , Trifluoperazine/therapeutic use
3.
Int. microbiol ; 18(1): 1-12, mar. 2015. tab
Article in English | IBECS | ID: ibc-141139

ABSTRACT

Historically, multiplicity of actions in synthetic compounds is a rule rather than exception. The science of non-antibiotics evolved in this background. From the antimalarial and antitrypanosomial dye methylene blue, chemically similar compounds, the phenothiazines, were developed. The phenothiazines were first recognised for their antipsychotic properties, but soon after their antimicrobial functions came to be known and then such compounds were designated as non-antibiotics. The emergence of highly drug-resistant bacteria had initiated an urgent need to search for novel affordable compounds. Several phenothiazines awakened the interest among scientists to determine their antimycobacterial activity. Chlorpromazine, trifluoperazine, methdilazine and thioridazine were found to have distinct antitubercular action. Thioridazine took the lead as researchers repeatedly claimed its potentiality. Although thioridazine is known for its central nervous system and cardiotoxic side-effects, extensive and repeated in vitro and in vivo studies by several research groups revealed that a very small dose of thioridazine is required to kill tubercle bacilli inside macrophages in the lungs, where the bacteria try to remain and multiply silently. Such a small dose is devoid of its adverse side-effects. Recent studies have shown that the (-) thioridazine is a more active antimicrobial agent and devoid of the toxic side effects normally encountered. This review describes the possibilities of bringing down thioridazine and its (-) form to be combined with other antitubercular drugs to treat infections by drug-resistant strains of Mycobacterium tuberculosis and try to eradicate this deadly disease (AU)


No disponible


Subject(s)
Humans , Tuberculosis/drug therapy , Phenothiazines/therapeutic use , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Mycobacterium tuberculosis/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...