Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 163: 105603, 2022 02.
Article in English | MEDLINE | ID: mdl-34954322

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia, which is neuropathologically characterized by extracellular senile plaques containing amyloid-ß and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. Previous studies have suggested a role for septin (SEPTIN) protein family members in AD-associated cellular processes. Here, we elucidated the potential role of presynaptic SEPTIN5 protein and its post-translational modifications in the molecular pathogenesis of AD. RNA and protein levels of SEPTIN5 showed a significant decrease in human temporal cortex in relation to the increasing degree of AD-related neurofibrillary pathology. Conversely, an increase in the phosphorylation of the functionally relevant SEPTIN5 phosphorylation site S327 was observed already in the early phases of AD-related neurofibrillary pathology, but not in the cerebrospinal fluid of individuals fulfilling the criteria for mild cognitive impairment due to AD. According to the mechanistic assessments, a link between SEPTIN5 S327 phosphorylation status and the effects of SEPTIN5 on amyloid precursor protein processing and markers of autophagy was discovered in mouse primary cortical neurons transduced with lentiviral constructs encoding wild type SEPTIN5 or SEPTIN5 phosphomutants (S327A and S327D). C57BL/6 J mice intrahippocampally injected with lentiviral wild type SEPTIN5 or phosphomutant constructs did not show changes in cognitive performance after five to six weeks from the start of injections. However, SEPTIN5 S327 phosphorylation status was linked to changes in short-term synaptic plasticity ex vivo at the CA3-CA1 synapse. Collectively, these data suggest that SEPTIN5 and its S327 phosphorylation status play a pivotal role in several cellular processes relevant for AD.


Subject(s)
Hippocampus/metabolism , Neurofibrillary Tangles/metabolism , Septins/metabolism , Synapses/metabolism , Animals , Autophagy/physiology , Disease Models, Animal , Hippocampus/pathology , Humans , Mice , Neurofibrillary Tangles/pathology , Neurons/metabolism , Neurons/pathology , Phosphorylation , Synapses/pathology
2.
Cells ; 9(11)2020 11 15.
Article in English | MEDLINE | ID: mdl-33203136

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-ß (Aß) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular processes and discovered a role for SEPTIN8 in the sorting and accumulation of ß-secretase. Here, we elucidated the potential role of SEPTIN5, an interaction partner of SEPTIN8, in the cellular processes relevant for AD, including amyloid precursor protein (APP) processing and the generation of Aß. The in vitro and in vivo studies both revealed that the downregulation of SEPTIN5 reduced the levels of APP C-terminal fragments (APP CTFs) and Aß in neuronal cells and in the cortex of Septin5 knockout mice. Mechanistic elucidation revealed that the downregulation of SEPTIN5 increased the degradation of APP CTFs, without affecting the secretory pathway-related trafficking or the endocytosis of APP. Furthermore, we found that the APP CTFs were degraded, to a large extent, via the autophagosomal pathway and that the downregulation of SEPTIN5 enhanced autophagosomal activity in neuronal cells as indicated by altered levels of key autophagosomal markers. Collectively, our data suggest that the downregulation of SEPTIN5 increases the autophagy-mediated degradation of APP CTFs, leading to reduced levels of Aß in neuronal cells.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Autophagy/physiology , Cell Cycle Proteins/metabolism , Septins/metabolism , Animals , Brain/metabolism , Cell Cycle Proteins/genetics , Endocytosis/physiology , Humans , Mice , Mice, Knockout , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Peptide Fragments/metabolism , Protein Transport/physiology , Septins/genetics
3.
Sci Rep ; 9(1): 20208, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882899

ABSTRACT

Progress in the preclinical and clinical development of neuroprotective and antiepileptogenic treatments for traumatic brain injury (TBI) necessitates the discovery of prognostic biomarkers for post-injury outcome. Our previous mRNA-seq data revealed a 1.8-2.5 fold increase in clusterin mRNA expression in lesioned brain areas in rats with lateral fluid-percussion injury (FPI)-induced TBI. On this basis, we hypothesized that TBI leads to increases in the brain levels of clusterin protein, and consequently, increased plasma clusterin levels. For evaluation, we induced TBI in adult male Sprague-Dawley rats (n = 80) by lateral FPI. We validated our mRNA-seq findings with RT-qPCR, confirming increased clusterin mRNA levels in the perilesional cortex (FC 3.3, p < 0.01) and ipsilateral thalamus (FC 2.4, p < 0.05) at 3 months post-TBI. Immunohistochemistry revealed a marked increase in extracellular clusterin protein expression in the perilesional cortex and ipsilateral hippocampus (7d to 1 month post-TBI), and ipsilateral thalamus (14d to 12 months post-TBI). In the thalamus, punctate immunoreactivity was most intense around activated microglia and mitochondria. Enzyme-linked immunoassays indicated that an acute 15% reduction, rather than an increase in plasma clusterin levels differentiated animals with TBI from sham-operated controls (AUC 0.851, p < 0.05). Our findings suggest that plasma clusterin is a candidate biomarker for acute TBI diagnosis.


Subject(s)
Biomarkers/metabolism , Brain Injuries, Traumatic/metabolism , Brain/metabolism , Clusterin/metabolism , RNA, Messenger/metabolism , Animals , Biomarkers/blood , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/genetics , Cerebral Cortex/metabolism , Clusterin/blood , Clusterin/genetics , Hippocampus/metabolism , Immunohistochemistry/methods , Kinetics , Male , RNA, Messenger/blood , RNA, Messenger/genetics , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction/methods , Thalamus/metabolism , Time Factors
4.
BMC Med Educ ; 19(1): 273, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31331319

ABSTRACT

BACKGROUND: Human morphology is a critical component of dental and medical graduate training. Innovations in basic science teaching methods are needed to keep up with an ever-changing landscape of technology. The purpose of this study was to investigate whether students in a medical and dental histology course would have better grades if they used gaming software Kahoot® and whether gamification effects on learning and enjoyment. METHODS: In an effort to both evoke students' interest and expand their skill retention, an online competition using Kahoot® was implemented for first-year students in 2018 (n = 215) at the University of Eastern Finland. Additionally, closed (160/215) or open-ended (41/215) feedback questions were collected and analyzed. RESULTS: The Kahoot® gamification program was successful and resulted in learning gains. The overall participant satisfaction using Kahoot® was high, with students (124/160) indicating that gamification increased their motivation to learn. The gaming approach seemed to enable the students to overcome individual difficulties (139/160) and to set up collaboration (107/160); furthermore, gamification promoted interest (109/160), and the respondents found the immediate feedback from senior professionals to be positive (146/160). In the open-ended survey, the students (23/41) viewed collaborative team- and gamification-based learning positively. CONCLUSION: This study lends support to the use of gamification in the teaching of histology and may provide a foundation for designing a gamification-integrated curriculum across healthcare disciplines.


Subject(s)
Academic Performance , Games, Experimental , Histology/education , Internet , Teaching , Curriculum , Finland , Humans , Students, Medical
5.
Neurobiol Aging ; 75: 98-108, 2019 03.
Article in English | MEDLINE | ID: mdl-30554086

ABSTRACT

Type 2 diabetes mellitus (T2DM) increases the risk for Alzheimer's disease (AD). Human AD brains show reduced glucose metabolism as measured by [18F]fluoro-2-deoxy-2-D-glucose positron emission tomography (FDG-PET). Here, we used 14-month-old wild-type (WT) and APPSwe/PS1dE9 (APP/PS1) transgenic mice to investigate how a single dose of intranasal insulin modulates brain glucose metabolism using FDG-PET and affects spatial learning and memory. We also assessed how insulin influences the activity of Akt1 and Akt2 kinases, the expression of glial and neuronal markers, and autophagy in the hippocampus. Intranasal insulin moderately increased glucose metabolism and specifically activated Akt2 and its downstream signaling in the hippocampus of WT, but not APP/PS1 mice. Furthermore, insulin differentially affected the expression of homeostatic microglia markers P2ry12 and Cx3cr1 and autophagy in the hippocampus of WT and APP/PS1 mice. We found no evidence that a single dose of intranasal insulin improves overnight memory. Our results suggest that intranasal insulin exerts diverse effects on Akt2 signaling, autophagy, and the homeostatic status of microglia depending on the degree of AD-related pathology.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Hippocampus/pathology , Proto-Oncogene Proteins c-akt/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Hippocampus/drug effects , Insulin/metabolism , Memory/drug effects , Mice , Neurons/metabolism , Presenilin-1/metabolism
6.
Neurobiol Dis ; 124: 454-468, 2019 04.
Article in English | MEDLINE | ID: mdl-30557660

ABSTRACT

No single-omic approach completely elucidates the multitude of alterations taking place in Alzheimer's disease (AD). Here, we coupled transcriptomic and phosphoproteomic approaches to determine the temporal sequence of changes in mRNA, protein, and phosphopeptide expression levels from human temporal cortical samples, with varying degree of AD-related pathology. This approach highlighted fluctuation in synaptic and mitochondrial function as the earliest pathological events in brain samples with AD-related pathology. Subsequently, increased expression of inflammation and extracellular matrix-associated gene products was observed. Interaction network assembly for the associated gene products, emphasized the complex interplay between these processes and the role of addressing post-translational modifications in the identification of key regulators. Additionally, we evaluate the use of decision trees and random forests in identifying potential biomarkers differentiating individuals with different degree of AD-related pathology. This multiomic and temporal sequence-based approach provides a better understanding of the sequence of events leading to AD.


Subject(s)
Alzheimer Disease/pathology , Gene Expression Profiling/methods , Proteomics/methods , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Humans , Systems Biology/methods
7.
PLoS One ; 12(12): e0188880, 2017.
Article in English | MEDLINE | ID: mdl-29206232

ABSTRACT

Human exposure to intermediate frequency magnetic fields (MF) is increasing due to applications like electronic article surveillance systems and induction heating cooking hobs. However, limited data is available on their possible health effects. The present study assessed behavioral and histopathological consequences of exposing mice to 7.5 kHz MF at 12 or 120 µT for 5 weeks. No effects were observed on body weight, spontaneous activity, motor coordination, level of anxiety or aggression. In the Morris swim task, mice in the 120 µT group showed less steep learning curve than the other groups, but did not differ from controls in their search bias in the probe test. The passive avoidance task indicated a clear impairment of memory over 48 h in the 120 µT group. No effects on astroglial activation or neurogenesis were observed in the hippocampus. The mRNA expression of brain-derived neurotrophic factor did not change but expression of the proinflammatory cytokine tumor necrosis factor alpha mRNA was significantly increased in the 120 µT group. These findings suggest that 7.5 kHz MF exposure may lead to mild learning and memory impairment, possibly through an inflammatory reaction in the hippocampus.


Subject(s)
Behavior, Animal , Magnetic Fields , Memory Disorders/etiology , Animals , Avoidance Learning , Body Weight , Brain-Derived Neurotrophic Factor/genetics , Mice , RNA, Messenger/genetics
8.
J Neuroinflammation ; 14(1): 215, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29115990

ABSTRACT

BACKGROUND: DHCR24, involved in the de novo synthesis of cholesterol and protection of neuronal cells against different stress conditions, has been shown to be selectively downregulated in neurons of the affected brain areas in Alzheimer's disease. METHODS: Here, we investigated whether the overexpression of DHCR24 protects neurons against inflammation-induced neuronal death using co-cultures of mouse embryonic primary cortical neurons and BV2 microglial cells upon acute neuroinflammation. Moreover, the effects of DHCR24 overexpression on dendritic spine density and morphology in cultured mature mouse hippocampal neurons and on the outcome measures of ischemia-induced brain damage in vivo in mice were assessed. RESULTS: Overexpression of DHCR24 reduced the loss of neurons under inflammation elicited by LPS and IFN-γ treatment in co-cultures of mouse neurons and BV2 microglial cells but did not affect the production of neuroinflammatory mediators, total cellular cholesterol levels, or the activity of proteins linked with neuroprotective signaling. Conversely, the levels of post-synaptic cell adhesion protein neuroligin-1 were significantly increased upon the overexpression of DHCR24 in basal growth conditions. Augmentation of DHCR24 also increased the total number of dendritic spines and the proportion of mushroom spines in mature mouse hippocampal neurons. In vivo, overexpression of DHCR24 in striatum reduced the lesion size measured by MRI in a mouse model of transient focal ischemia. CONCLUSIONS: These results suggest that the augmentation of DHCR24 levels provides neuroprotection in acute stress conditions, which lead to neuronal loss in vitro and in vivo.


Subject(s)
Inflammation/metabolism , Neurons/metabolism , Neuroprotection/physiology , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Death/physiology , Coculture Techniques , Hippocampus/metabolism , Hippocampus/pathology , Humans , Inflammation/pathology , Male , Mice , Microglia/metabolism , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...