Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLOS Glob Public Health ; 3(10): e0002283, 2023.
Article in English | MEDLINE | ID: mdl-37851685

ABSTRACT

Bedaquiline (B), pretomanid (Pa) and linezolid (L) are key components of new regimens for treating rifampicin-resistant tuberculosis (TB). However, there is limited information on the global prevalence of resistance to these drugs and the impact of resistance on treatment outcomes. Mycobacterium tuberculosis (MTB) phenotypic drug susceptibility and whole-genome sequence (WGS) data, as well as patient profiles from 4 pretomanid-containing trials-STAND, Nix-TB, ZeNix and SimpliciTB-were used to investigate the rates of baseline resistance (BR) and acquired resistance (AR) to BPaL drugs, as well as their genetic basis, risk factors and impact on treatment outcomes. Data from >1,000 TB patients enrolled from 2015 to 2020 in 12 countries was assessed. We identified 2 (0.3%) participants with linezolid BR. Pretomanid BR was also rare, with similar rates across TB drug resistance types (0-2.1%). In contrast, bedaquiline BR was more prevalent among participants with highly resistant TB or longer prior treatment histories than those with newly diagnosed disease (5.2-6.3% vs. 0-0.3%). Bedaquiline BR was a risk factor for bacteriological failure or relapse in Nix-TB/ZeNix; 3/12 (25%, 95% CI 5-57%) participants with vs. 6/185 (3.2%, 1.2-6.9%) without bedaquiline BR. Across trials, we observed no linezolid AR, and only 3 cases of bedaquiline AR, including 2 participants with poor adherence. Overall, pretomanid AR was also rare, except in ZeNix patients with bedaquiline BR. WGS analyses revealed novel mutations in canonical resistant genes and, in 7 MTB isolates, the genetic determinants could not be identified. The overall low rates of BR to linezolid and pretomanid, and to a lesser extent to bedaquiline, observed in the pretomanid trials are in support of the worldwide implementation of BPaL-based regimens. Similarly, the overall low AR rates observed suggest BPaL drugs are better protected in the regimens trialed here than in other regimens combining bedaquiline with more, but less effective drugs.

2.
Antimicrob Resist Infect Control ; 10(1): 106, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34281623

ABSTRACT

Globally, tuberculosis (TB) is a leading cause of death from a single infectious agent. Healthcare workers (HCWs) are at increased risk of hospital-acquired TB infection due to persistent exposure to Mycobacterium tuberculosis (Mtb) in healthcare settings. The World Health Organization (WHO) has developed an international system of infection prevention and control (IPC) interventions to interrupt the cycle of nosocomial TB transmission. The guidelines on TB IPC have proposed a comprehensive hierarchy of three core practices, comprising: administrative controls, environmental controls, and personal respiratory protection. However, the implementation of most recommendations goes beyond minimal physical and organisational requirements and thus cannot be appropriately introduced in resource-constrained settings and areas of high TB incidence. In many low- and middle-income countries (LMICs) the lack of knowledge, expertise and practice on TB IPC is a major barrier to the implementation of essential interventions. HCWs often underestimate the risk of airborne Mtb dissemination during tidal breathing. The lack of required expertise and funding to design, install and maintain the environmental control systems can lead to inadequate dilution of infectious particles in the air, and in turn, increase the risk of TB dissemination. Insufficient supply of particulate respirators and lack of direction on the re-use of respiratory protection is associated with unsafe working practices and increased risk of TB transmission between patients and HCWs. Delayed diagnosis and initiation of treatment are commonly influenced by the effectiveness of healthcare systems to identify TB patients, and the availability of rapid molecular diagnostic tools. Failure to recognise resistance to first-line drugs contributes to the emergence of drug-resistant Mtb strains, including multidrug-resistant and extensively drug-resistant Mtb. Future guideline development must consider the social, economic, cultural and climatic conditions to ensure that recommended control measures can be implemented in not only high-income countries, but more importantly low-income, high TB burden settings. Urgent action and more ambitious investments are needed at both regional and national levels to get back on track to reach the global TB targets, especially in the context of the COVID-19 pandemic.


Subject(s)
COVID-19/complications , Health Personnel , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Tuberculosis/prevention & control , Tuberculosis/transmission , COVID-19/prevention & control , Humans , Iatrogenic Disease/prevention & control , Incidence , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...