Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(35): 12993-12997, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37615663

ABSTRACT

In this study, we use nanopore arrays as a platform for detecting and characterizing individual nanoparticles (NPs) in real time. Dark-field imaging of nanopores with dimensions smaller than the wavelength of light occurs under conditions where trans-illumination is blocked, while the scattered light propagates to the far-field, making it possible to identify nanopores. The intensity of scattering increases dramatically during insertion of AgNPs into empty nanopores, owing to their plasmonic properties. Thus, momentary occupation of a nanopore by a AgNP produces intensity transients that can be analyzed to reveal the following characteristics: (1) NP scattering intensity, which scales with the sixth power of the AgNP radius, shows a normal distribution arising from the heterogeneity in NP size, (2) the nanopore residence time of NPs, which was observed to be stochastic with no permselective effects, and (3) the frequency of AgNP capture events on a 21 × 21 nanopore array, which varies linearly with the concentration of the NPs, agreeing with the frequency calculated from theory. The lower limit of detection (LOD) for NPs was 130 fM, indicating that the measurement can be used in applications in which ultrasensitive detection is required. The results presented here provide valuable insights into the dynamics of NP transport into and out of nanopores and highlight the potential of nanopore arrays as powerful, massively parallel tools for nanoparticle characterization and detection.

2.
Nat Commun ; 14(1): 3889, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37393324

ABSTRACT

Near-perfect light absorbers (NPLAs), with absorbance, [Formula: see text], of at least 99%, have a wide range of applications ranging from energy and sensing devices to stealth technologies and secure communications. Previous work on NPLAs has mainly relied upon plasmonic structures or patterned metasurfaces, which require complex nanolithography, limiting their practical applications, particularly for large-area platforms. Here, we use the exceptional band nesting effect in TMDs, combined with a Salisbury screen geometry, to demonstrate NPLAs using only two or three uniform atomic layers of transition metal dichalcogenides (TMDs). The key innovation in our design, verified using theoretical calculations, is to stack monolayer TMDs in such a way as to minimize their interlayer coupling, thus preserving their strong band nesting properties. We experimentally demonstrate two feasible routes to controlling the interlayer coupling: twisted TMD bi-layers and TMD/buffer layer/TMD tri-layer heterostructures. Using these approaches, we demonstrate room-temperature values of [Formula: see text]=95% at λ=2.8 eV with theoretically predicted values as high as 99%. Moreover, the chemical variety of TMDs allows us to design NPLAs covering the entire visible range, paving the way for efficient atomically-thin optoelectronics.


Subject(s)
Communication , Transition Elements , Research Design , Technology
3.
Opt Express ; 28(19): 28590-28599, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988126

ABSTRACT

We demonstrate coupling to and control over the broadening and dispersion of a mid-infrared leaky mode, known as the Berreman mode, in samples with different dielectric environments. We fabricate subwavelength films of AlN, a mid-infrared epsilon-near-zero material that supports the Berreman mode, on materials with a weakly negative permittivity, strongly negative permittivity, and positive permittivity. Additionally, we incorporate ultra-thin AlN layers into a GaN/AlN heterostructure, engineering the dielectric environment above and below the AlN. In each of the samples, coupling to the Berreman mode is observed in angle-dependent reflection measurements at wavelengths near the longitudinal optical phonon energy. The measured dispersion of the Berreman mode agrees well with numerical modes. Differences in the dispersion and broadening for the different materials is quantified, including a 13 cm-1 red-shift in the energy of the Berreman mode for the heterostructure sample.

4.
ACS Nano ; 14(8): 9502-9511, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32559065

ABSTRACT

The replacement of plastic with eco-friendly and biodegradable materials is one of the most stringent environmental challenges. In this respect, cellulose stands out as a biodegradable polymer. However, a significant challenge is to obtain biodegradable materials for high-end photonics that are robust in humid environments. Here, we demonstrate the fabrication of high-quality micro- and nanoscale photonic and plasmonic structures via replica molding using pure cellulose and a blended version with nonedible agro-wastes. Both materials are biodegradable in soil and seawater according to the ISO 17556 standard. The pure cellulose films are transparent in the vis-NIR spectrum, having a refractive index similar to glass. The microstructured photonic crystals show high-quality diffractive properties that are maintained under extended exposure to water. Nanostructuring the cellulose transforms it to a biodegradable metasurface manifesting bright structural colors. A subsequent deposition of Ag endowed the metasurface with plasmonic properties used to produce plasmonic colors and for surface-enhanced Raman scattering.


Subject(s)
Cellulose , Optics and Photonics , Glass , Photons , Spectrum Analysis, Raman
5.
ACS Appl Nano Mater ; 3(8): 8167-8175, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-33817562

ABSTRACT

Lead-halide perovskite nanocrystals are a promising material in optical devices due to their high photoluminescence (PL) quantum yield, excellent color purity, and low stimulated emission threshold. However, one problem is the stability of the nanocrystal films under different environmental conditions and under high temperatures. The latter is particularly relevant for device fabrication if further processes that require elevated temperatures are needed after the deposition of the nanocrystal film. In this work, we study the impact of a thin oxide layer of Al2O3 on the light emission properties of thin nanocrystal films. We find that nanocrystals passivated with quaternary ammonium bromide ligands maintain their advantageous optical properties in alumina-coated films and do not suffer from degradation at temperatures up to 100 °C. This is manifested by conservation of the PL peak position and line width, PL decay dynamics, and low threshold for amplified spontaneous emission. The PL remains stable for up to 100 h at a temperature of 80 °C, and the ASE intensity decreases by less than 30% under constant pumping at high fluence for 1 h. Our approach outlines that the combination of tailored surface chemistry with additional protective coating of the nanocrystal film is a feasible approach to obtain stable emission at elevated temperatures and under extended operational time scales.

6.
Nanotechnology ; 31(12): 125401, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31783388

ABSTRACT

We report a facile technique to fabricate manganese dioxide (MnO2) encapsulated titanium dioxide (TiO2) nanofiber heterostructure for its use as an electrode material in aqueous electrolyte based asymmetric supercapacitor (SC). MnO2 coated TiO2 nanofibers, prepared by electrospinning and post-hydrothermal process exhibited superior electrochemical properties in aqueous Na2SO4 electrolyte. The MnO2 shell with average thickness of approximately 10 nm contributed to the high electrochemical performance for charge storage by redox reaction and intercalation mechanisms, while the anatase phase TiO2 core provided an easy pathway for electronic transport with additional electrochemical stability over thousands of charge-discharge cycles. An asymmetric SC designed from the MnO2-TiO2 nanofiber electrode and single walled carbon nanotubes electrode showed high operating voltage window (2.2 V) with maximum gravimetric capacitance of 111.5 F g-1.

7.
Nanoscale ; 11(17): 8334-8342, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-30984951

ABSTRACT

Rapid progress on the fabrication of lead halide perovskite crystals has led to highly promising performance in optoelectronic devices, particularly from three-dimensional crystals. Recently, these efforts have been extended to layered perovskite structures, motivated in part by their good environmental stability. Furthermore, layered perovskites represent a nanocrystal system with micron-size extensions and strong confinement in one dimension that is highly appealing for studying fundamental photophysics. Here, we report a facile route for the growth of single-layered perovskite platelets, which is demonstrated using four different organic cations acting as spacers, providing a layer interdistance from approx. 1.3 nm to 2.4 nm. The resulting ensembles of platelets exhibit a strong emission band in the deep blue spectral region characterized by two emission peaks and a photoluminescence quantum yield (PLQY) up to 15%. Thin 2D layered perovskite flakes can be readily obtained by mechanical exfoliation, and their emission shows a PLQY as high as 42%, which can be related to reduced reabsorption in the exfoliated crystals. Furthermore, the low energy peak that was observed in the double peak emission from the platelet ensembles is suppressed in the exfoliated flakes. Therefore, the exfoliated flakes manifest a more colour-pure blue emission with strongly increased radiative rate as compared to the dried platelet aggregates obtained directly from the synthesis. The straightforward fabrication strategy that employs solely polar solvents with low environmental impact provides a highly appealing route towards two-dimensional perovskite systems with bright and stable emission in the blue spectral range.

8.
Nano Lett ; 19(5): 3151-3160, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30920844

ABSTRACT

Metal/Insulator/Metal nanocavities (MIMs) are highly versatile systems for nanometric light confinement and waveguiding, and their optical properties are mostly interpreted in terms of surface plasmon polaritons. Although classic electromagnetic theory accurately describes their behavior, it often lacks physical insight, leaving some fundamental aspects of light interaction with these structures unexplored. In this work, we elaborate a quantum mechanical description of the MIM cavity as a double barrier quantum well. We identify the square of the imaginary part κ of the refractive index ñ of the metal as the optical potential and find that MIM cavity resonances are suppressed if the ratio n/κ exceeds a certain limit, which shows that low n and high κ values are desired for strong and sharp cavity resonances. Interestingly, the spectral regions of cavity mode suppression correspond to the interband transitions of the metals, where the optical processes are intrinsically non-Hermitian. The quantum treatment allows to describe the tunnel effect for photons and reveals that the MIM cavity resonances can be excited by resonant tunneling via illumination through the metal, without the need of momentum matching techniques such as prisms or grating couplers. By combining this analysis with spectroscopic ellipsometry on experimental MIM structures and by developing a simple harmonic oscillator model of the MIM for the calculation of its effective permittivity, we show that the cavity eigenmodes coincide with low-loss zeros of the effective permittivity. Therefore, the MIM resonances correspond to epsilon-near-zero (ENZ) eigenmodes that can be excited via resonant tunneling. Our approach provides a toolbox for the engineering of ENZ resonances throughout the entire visible range, which we demonstrate experimentally and theoretically. In particular, we apply our quantum mechanical approach to asymmetric MIM superabsorbers and use it for configuring broadly tunable refractive index sensors. Our work elucidates the role of MIM cavities as photonic analogues to tunnel diodes and opens new perspectives for metamaterials with designed ENZ response.

9.
Nanoscale Adv ; 1(11): 4258-4267, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-36134398

ABSTRACT

Smart, stimuli-responsive, photoluminescent materials that undergo a visually perceptible emission color change in the presence of an external stimulus have long been attractive for use in sensor platforms. When the stimulus is the presence of water, the materials that undergo changes in their light emission properties are called hydrochromic and they can be used for the development of sensors to detect and quantify the water content in organic solvents, which is fundamental for laboratory safety and numerous industrial applications. Herein, we demonstrate the preparation of structurally different carbon dots with tunable emission wavelengths via a simple carbonization approach under controlled temperature and time, involving commercial brown sugar as a starting material. The detailed experimental analysis reveals the "structure-hydrochromic property" relationship of the carbon dots and assesses their capability as effective water sensors. The carbon dots that were proved most efficient for the specific application were then used to identify the presence of water in various aprotic and protic organic solvents via a sensing mechanism based either on the fluorescence wavelength shift or on the fluorescence intensity enhancement, respectively, attributed to the formation of intermolecular hydrogen bonds between carbon dots and water molecules. This is the first demonstration of structurally defined carbon dots in a specific application. The developed carbon dots, apart from being environmentally friendly, were proved to also be biocompatible, enabling this presented process to be a path to "green" sensors.

10.
ACS Appl Mater Interfaces ; 10(35): 29583-29592, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30088758

ABSTRACT

We report an interesting case of in situ dynamic nanostructuring of catalyst and support under hydrogen evolution conditions in basic media. When solution-grown CuO nanoplates on titanium substrates are subjected to hydrogen evolution reaction, besides the reduction of CuO to metallic Cu nanoplates, both catalyst and support simultaneously undergo a nanostructuring process. The process is driven by the dissolution-redeposition of Cu and the alkaline etching of the titanium support. The morphology of the resulting nanocomposite material consists of a porous matrix made of ultrasmall Cu nanocrystals and amorphous TiO x nanoparticles. Interestingly, the nanostructuring of the catalyst can be finely controlled by varying the applied potential. Such a process leads to a 5.4-fold improvement in the catalyst activity, which is attributed not only to its large active surface area (formed upon nanostructuring), but also to an improved water dissociation activity, provided by the in situ formation of TiO x nanoparticles. The final catalyst exhibits -10 mA/cm2 of current density at a small overpotential of -108 mV and a long-term operational stability up to 50 h. Density functional theory calculations show that the co-presence of Cu and TiO2 nanoparticles optimizes the free energy of hydrogen adsorption in the final catalyst. Our work highlights the importance of studying the dynamic evolution of catalysts under operational conditions and choice of proper support that enhances the catalyst activity.

11.
ACS Appl Mater Interfaces ; 10(26): 22356-22362, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29893110

ABSTRACT

Colloidal nanocrystals are a promising fluorescent class of materials whose spontaneous emission features can be tuned over a broad spectral range via their composition, geometry, and size. However, toward embedding nanocrystal films in elaborated device geometries, one significant drawback is the sensitivity of their emission properties on further fabrication processes like lithography, metal or oxide deposition, etc. In this work, we demonstrate how bright-emitting and robust thin films can be obtained by combining nanocrystal deposition from solutions via spin coating with subsequent atomic layer deposition of alumina. For the resulting composite films, the layer thickness can be controlled on the nanoscale and their refractive index can be finely tuned by the amount of deposited alumina. Ellipsometry is used to measure the real and imaginary part of the dielectric permittivity, which gives direct access to the wavelength dependent refractive index and absorbance of the film. Detailed analysis of the photophysics of thin films of core-shell nanocrystals with different shapes and different shell thicknesses allows to correlate the behavior of the photoluminescence and of the decay lifetime to the changes in the nonradiative rate that are induced by the alumina deposition. We show that the photoemission properties of such composite films are stable in wavelength and intensity over several months and that the photoluminescence completely recovers from heating processes up to 240 °C. The latter is particularly interesting since it demonstrates robustness to the typical heat treatment that is needed in several process steps like resist-based lithography and deposition by thermal or electron beam evaporation of metals or oxides.

12.
ACS Photonics ; 5(6): 2287-2294, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-31867410

ABSTRACT

The enhancement of the photophysical response of fluorophores is a crucial factor for photonic and optoelectronic technologies that involve fluorophores as gain media. Recent advances in the development of an extreme light propagation regime, called epsilon-near-zero (ENZ), provide a promising approach in this respect. In this work, we design metal/dielectric nanocavities to be resonant with the absorption and emission bands of the employed fluorophores. Using CsPbBr3 perovskite nanocrystal films as light emitters, we study the spontaneous emission and decay rate enhancement induced by a specifically tailored double-epsilon-near-zero (double ENZ) structure. We experimentally demonstrate the existence of two ENZ wavelengths, by directly measuring their dielectric permittivity via ellipsometric analysis. The double ENZ nature of this plasmonic nanocavity has been exploited to achieve both surface plasmon enhanced absorption (SPEA) and surface plasmon coupled emission (SPCE), inducing a significant enhancement of both the spontaneous emission and the decay rate of the perovskite nanocrystal film that is placed on top of the nanocavity. Finally, we discuss the possibility of tailoring the two ENZ wavelengths of this structure within the visible spectrum simply by finely designing the thickness of the two dielectric layers, which enables resonance matching with a broad variety of dyes. Our device design is appealing for many practical applications, ranging from sensing to low threshold amplified spontaneous emission, since we achieve a strong PL enhancement with structures that allow for straightforward fluorophore deposition on a planar surface that keeps the fluorophores exposed and accessible.

SELECTION OF CITATIONS
SEARCH DETAIL
...