Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 174: 116441, 2024 May.
Article in English | MEDLINE | ID: mdl-38518597

ABSTRACT

While current anti-Spike protein (SP) vaccines have been pivotal in managing the pandemic, their limitations in delivery, storage, and the inability to provide mucosal immunization (preventing infections) highlight the ongoing necessity for research and innovation. To tackle these constraints, our research group developed a bacterial-based vaccine using a non-pathogenic E. coli Nissle 1917 (EcN) strain genetically modified to express the SARS-CoV-2 spike protein on its surface (EcN-pAIDA1-SP). We intranasally delivered the EcN-pAIDA1-SP in two doses and checked specific IgG/IgA production as well as the key immune mediators involved in the process. Moreover, following the initial and booster vaccine doses, we exposed both immunized and non-immunized mice to intranasal delivery of SARS-CoV-2 SP to assess the effectiveness of EcN-pAIDA1-SP in protecting lung tissue from the inflammation damage. We observed detectable levels of anti-SARS-CoV-2 spike IgG in serum samples and IgA in bronchoalveolar lavage fluid two weeks after the initial treatment, with peak concentrations in the respective samples on the 35th day. Moreover, immunoglobulins displayed a progressively enhanced avidity index, suggesting a selective binding to the spike protein. Finally, the pre-immunized group displayed a decrease in proinflammatory markers (TLR4, NLRP3, ILs) following SP challenge, compared to the non-immunized groups, along with better preservation of tissue morphology. Our probiotic-based technology provides an effective immunobiotic tool to protect individuals against disease and control infection spread.


Subject(s)
Administration, Intranasal , COVID-19 Vaccines , Escherichia coli , Spike Glycoprotein, Coronavirus , Animals , Female , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunization/methods , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/immunology , Lung/pathology , Lung/microbiology , Lung/metabolism , Lung Injury/prevention & control , Lung Injury/immunology , Mice, Inbred BALB C , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
2.
J Med Chem ; 66(24): 17059-17073, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38085955

ABSTRACT

Developing drugs for brain infection by Naegleria fowleri is an unmet medical need. We used a combination of cheminformatics, target-, and phenotypic-based drug discovery methods to identify inhibitors that target an essential N. fowleri enzyme, sterol 14-demethylase (NfCYP51). A total of 124 compounds preselected in silico were tested against N. fowleri. Nine primary hits with EC50 ≤ 10 µM were phenotypically identified. Cocrystallization with NfCYP51 focused attention on one primary hit, miconazole-like compound 2a. The S-enantiomer of 2a produced a 1.74 Å cocrystal structure. A set of analogues was then synthesized and evaluated to confirm the superiority of the S-configuration over the R-configuration and the advantage of an ether linkage over an ester linkage. The two compounds, S-8b and S-9b, had an improved EC50 and KD compared to 2a. Importantly, both were readily taken up into the brain. The brain-to-plasma distribution coefficient of S-9b was 1.02 ± 0.12, suggesting further evaluation as a lead for primary amoebic meningoencephalitis.


Subject(s)
Miconazole , Naegleria fowleri , 14-alpha Demethylase Inhibitors/pharmacology , Drug Discovery
3.
Neurosci Lett ; 806: 137221, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37031943

ABSTRACT

Enteric glia are a unique population of peripheral neuroglia associated with the enteric nervous system (ENS) throughout the digestive tract. The emerging data from the latest glial biology studies unveiled enteric glia as a heterogenic population with plastic and adaptative abilities that display phenotypic and functional changes upon distinct extrinsic cues. This aspect is essential in the dynamic signaling that enteric glia engage with neurons and other neighboring cells within the intestinal wall, such as epithelial, endocrine, and immune cells to maintain local homeostasis. Likewise, enteric glia sense signals from luminal microbes, although the extent of this active communication is still unclear. In this minireview, we discuss the recent findings that support glia-microbes crosstalk in the intestine in health and disease, pointing out the critical aspects that require further investigation.


Subject(s)
Disease , Enteric Nervous System , Gastrointestinal Microbiome , Health , Neuroglia , Humans , Biodiversity , Enteric Nervous System/cytology , Enteric Nervous System/physiology , Enteric Nervous System/physiopathology , Gastrointestinal Microbiome/physiology , Host Microbial Interactions , Inflammation/microbiology , Neuroglia/physiology , Probiotics , Animals
4.
Biomolecules ; 13(3)2023 03 21.
Article in English | MEDLINE | ID: mdl-36979504

ABSTRACT

As of October 2022, the COVID-19 pandemic continues to pose a major public health conundrum, with increased rates of symptomatic infections in vaccinated individuals. An ideal vaccine candidate for the prevention of outbreaks should be rapidly scalable, easy to administer, and able to elicit a potent mucosal immunity. Towards this aim, we proposed an engineered Escherichia coli (E. coli) Nissle 1917 (EcN) strain with SARS-CoV-2 spike protein (SP)-coding plasmid, which was able to expose SP on its cellular surface by a hybridization with the adhesin involved in diffuse adherence 1 (AIDA1). In this study, we presented the effectiveness of a 16-week intragastrically administered, engineered EcN in producing specific systemic and mucosal immunoglobulins against SARS-CoV-2 SP in mice. We observed a time-dependent increase in anti-SARS-CoV-2 SP IgG antibodies in the sera at week 4, with a titre that more than doubled by week 12 and a stable circulating titre by week 16 (+309% and +325% vs. control; both p < 0.001). A parallel rise in mucosal IgA antibody titre in stools, measured via intestinal and bronchoalveolar lavage fluids of the treated mice, reached a plateau by week 12 and until the end of the immunization protocol (+300, +47, and +150%, at week 16; all p < 0.001 vs. controls). If confirmed in animal models of infection, our data indicated that the engineered EcN may be a potential candidate as an oral vaccine against COVID-19. It is safe, inexpensive, and, most importantly, able to stimulate the production of both systemic and mucosal anti-SARS-CoV-2 spike-protein antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Animals , Mice , Spike Glycoprotein, Coronavirus/genetics , Escherichia coli/genetics , COVID-19 Vaccines , Antibody Formation , Pandemics , COVID-19/prevention & control , SARS-CoV-2 , Immunization/methods , Antibodies, Viral
5.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203336

ABSTRACT

Improving clinical outcomes and delaying disease recrudescence in Ulcerative Colitis (UC) patients is crucial for clinicians. In addition to traditional and new pharmacological therapies that utilize biological drugs, the development of medical devices that can ameliorate UC and facilitate the remission phase should not be overlooked. Drug-based therapy requires time to be personalized and to evaluate the benefit/risk ratio. However, the increasing number of diagnosed UC cases worldwide necessitates the exploration of new strategies to enhance clinical outcomes. By incorporating medical devices alongside pharmacological treatments, clinicians can provide additional support to UC patients, potentially improving their condition and slowing down the recurrence of symptoms. Chemically identified as an azelaic acid derivative and palmitoylethanolamide (PEA) analog, adelmidrol is a potent anti-inflammatory and antioxidant compound. In this study, we aimed to evaluate the effect of an intrarectal administration of 2% adelmidrol (Ade) and 0.1% hyaluronic acid (HA) gel formulation in both the acute and resolution phase of a mouse model of colitis induced via DNBS enema. We also investigated its activity in cultured human colon biopsies isolated from UC patients in the remission phase at follow-up when exposed in vitro to a cytomix challenge. Simultaneously, with its capacity to effectively alleviate chronic painful inflammatory cystitis when administered intravesically to urological patients such as Vessilen, the intrarectal administration of Ade/HA gel has shown remarkable potential in improving the course of colitis. This treatment approach has demonstrated a reduction in the histological damage score and an increase in the expression of ZO-1 and occludin tight junctions in both in vivo studies and human specimens. By acting independently on endogenous PEA levels and without any noticeable systemic absorption, the effectiveness of Ade/HA gel is reliant on a local antioxidant mechanism that functions as a "barrier effect" in the inflamed gut. Building on the findings of this preliminary study, we are confident that the Ade/HA gel medical device holds promise as a valuable adjunct in supporting traditional anti-UC therapies.


Subject(s)
Colitis, Ulcerative , Colitis , Cystitis , Dicarboxylic Acids , Palmitic Acids , Humans , Animals , Mice , Colitis, Ulcerative/drug therapy , Hyaluronic Acid , Antioxidants , Biopsy
6.
Biomolecules ; 12(8)2022 08 22.
Article in English | MEDLINE | ID: mdl-36009057

ABSTRACT

Similar to canine inflammatory enteropathy, inflammatory bowel disease (IBD) is a chronic idiopathic condition characterized by remission periods and recurrent flares in which diarrhea, visceral pain, rectal bleeding/bloody stools, and weight loss are the main clinical symptoms. Intestinal barrier function alterations often persist in the remission phase of the disease without ongoing inflammatory processes. However, current therapies include mainly anti-inflammatory compounds that fail to promote functional symptoms-free disease remission, urging new drug discoveries to handle patients during this step of the disease. ALIAmides (ALIA, autacoid local injury antagonism) are bioactive fatty acid amides that recently gained attention because of their involvement in the control of inflammatory response, prompting the use of these molecules as plausible therapeutic strategies in the treatment of several chronic inflammatory conditions. N-palmitoyl-D-glucosamine (PGA), an under-researched ALIAmide, resulted in being safe and effective in preclinical models of inflammation and pain, suggesting its potential engagement in the treatment of IBD. In our study, we demonstrated that micronized PGA significantly and dose-dependently reduces colitis severity, improves intestinal mucosa integrity by increasing the tight junction proteins expression, and downregulates the TLR-4/NLRP3/iNOS pathway via PPAR-α receptors signaling in DNBS-treated mice. The possibility of clinically exploiting micronized PGA as support for the treatment and prevention of inflammation-related changes in IBD patients would represent an innovative, effective, and safe strategy.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Dogs , Mice , Colitis/chemically induced , Colitis/drug therapy , Dinitrofluorobenzene/analogs & derivatives , Glucosamine , Inflammation/drug therapy , Inflammatory Bowel Diseases/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR alpha , Toll-Like Receptor 4
7.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628274

ABSTRACT

Engineered probiotics represent a cutting-edge therapy in intestinal inflammatory disease (IBD). Genetically modified bacteria have provided a new strategy to release therapeutically operative molecules in the intestine and have grown into promising new therapies for IBD. Current IBD treatments, such as corticosteroids and immunosuppressants, are associated with relevant side effects and a significant proportion of patients are dependent on these therapies, thus exposing them to the risk of relevant long-term side effects. Discovering new and effective therapeutic strategies is a worldwide goal in this research field and engineered probiotics could potentially provide a viable solution. This review aims at describing the proceeding of bacterial engineering and how genetically modified probiotics may represent a promising new biotechnological approach in IBD treatment.


Subject(s)
Inflammatory Bowel Diseases , Probiotics , Bacteria , Chronic Disease , Humans , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/therapy , Intestines/microbiology , Probiotics/therapeutic use
8.
Metabolites ; 12(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35629962

ABSTRACT

Adelmidrol is a promising palmitoylethanolamide (PEA) analog which displayed up-and-coming anti-inflammatory properties in several inflammatory conditions. Recent studies demonstrated that Adelmidrol is an in vitro enhancer of PEA endogenous production, through the so called "entourage" effect. The present study investigated the ability of Adelmidrol (1 and 10 mg/Kg per os) to increase the endogenous level of PEA in the duodenum and colon of mice after 21-day oral administration in the presence and absence of PPAR-γ inhibitor (1 mg/kg). The level of PEA was analyzed by HPLC-MS. The expression of PEA-related enzymatic machinery was evaluated by western blot and RT-PCR analysis. Our findings demonstrated that Adelmidrol significantly increased PEA levels in the duodenum and colon in a dose/time-dependent manner. We also revealed that Adelmidrol up regulated the enzymatic machinery responsible for PEA metabolism and catabolism. Interestingly, the use of the selective irreversible PPAR-γ antagonist did not affect either PEA intestinal levels or expression/transcription of PEA metabolic enzymes following Adelmidrol administration. The "entourage effect" with Adelmidrol as an enhancer of PEA was thus PPAR-γ-independent. The findings suggest that Adelmidrol can maximize a PEA therapeutic-based approach in several intestinal morbidities.

9.
Foods ; 11(7)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35407131

ABSTRACT

Crohn's disease (CD) is a chronic inflammatory gastrointestinal disorder requiring lifelong medications. The currently approved drugs for CD are associated with relevant side effects and several studies suggest an increased use of nutraceuticals among CD patients, seeking for what is perceived as a more "natural" approach in controlling this highly morbid condition. Nutraceuticals are foods or foods' components with beneficial health properties that could aid in CD treatment for their anti-inflammatory, analgesic and immunoregulatory activities that come along with safety, high tolerability, easy availability and affordability. Depending on their biological effect, nutraceuticals' support could be employed in different subsets of CD patients, both those with active disease, as adjunctive immunomodulatory therapies, and/or in quiescent disease to provide symptomatic relief in patients with residual functional symptoms. Despite the increasing interest of the general public, both limited research and lack of education from healthcare professionals regarding their real clinical effectiveness account for the increasing number of patients turning to unconventional sources. Professionals should recognize their widespread use and the evidence base for or against their efficacy to properly counsel IBD patients. Overall, nutraceuticals appear to be safe complements to conventional therapies; nonetheless, little quality evidence supports a positive impact on underlying inflammatory activity.

10.
Phytother Res ; 35(12): 6893-6903, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34643000

ABSTRACT

Given the abundancy of angiotensin converting enzyme 2 (ACE-2) receptors density, beyond the lung, the intestine is considered as an alternative site of infection and replication for severe acute respiratory syndrome by coronavirus type 2 (SARS-CoV-2). Cannabidiol (CBD) has recently been proposed in the management of coronavirus disease 2019 (COVID-19) respiratory symptoms because of its anti-inflammatory and immunomodulatory activity exerted in the lung. In this study, we demonstrated the in vitro PPAR-γ-dependent efficacy of CBD (10-9 -10-7  M) in preventing epithelial damage and hyperinflammatory response triggered by SARS-CoV-2 spike protein (SP) in a Caco-2 cells. Immunoblot analysis revealed that CBD was able to reduce all the analyzed proinflammatory markers triggered by SP incubation, such as tool-like receptor 4 (TLR-4), ACE-2, family members of Ras homologues A-GTPase (RhoA-GTPase), inflammasome complex (NLRP3), and Caspase-1. CBD caused a parallel inhibition of interleukin 1 beta (IL-1ß), IL-6, tumor necrosis factor alpha (TNF-α), and IL-18 by enzyme-linked immunosorbent assay (ELISA) assay. By immunofluorescence analysis, we observed increased expression of tight-junction proteins and restoration of transepithelial electrical resistance (TEER) following CBD treatment, as well as the rescue of fluorescein isothiocyanate (FITC)-dextran permeability induced by SP. Our data indicate, in conclusion, that CBD is a powerful inhibitor of SP protein enterotoxicity in vitro.


Subject(s)
Cannabidiol , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Spike Glycoprotein, Coronavirus/immunology , COVID-19 , Caco-2 Cells , Cannabidiol/pharmacology , Caspase 1 , Cytokines , Humans , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Toll-Like Receptor 4
11.
Metabolites ; 11(9)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34564408

ABSTRACT

Despite its possible therapeutic potential against COVID-19, the exact mechanism(s) by which palmitoylethanolamide (PEA) exerts its beneficial activity is still unclear. PEA has demonstrated analgesic, anti-allergic, and anti-inflammatory activities. Most of the anti-inflammatory properties of PEA arise from its ability to antagonize nuclear factor-κB (NF-κB) signalling pathway via the selective activation of the PPARα receptors. Acting at this site, PEA can downstream several genes involved in the inflammatory response, including cytokines (TNF-α, Il-1ß) and other signal mediators, such as inducible nitric oxide synthase (iNOS) and COX2. To shed light on this, we tested the anti-inflammatory and immunomodulatory activity of ultramicronized(um)-PEA, both alone and in the presence of specific peroxisome proliferator-activated receptor alpha (PPAR-α) antagonist MK886, in primary cultures of murine alveolar macrophages exposed to SARS-CoV-2 spike glycoprotein (SP). SP challenge caused a significant concentration-dependent increase in proinflammatory markers (TLR4, p-p38 MAPK, NF-κB) paralleled to a marked upregulation of inflammasome-dependent inflammatory pathways (NLRP3, Caspase-1) with IL-6, IL-1ß, TNF-α over-release, compared to vehicle group. We also observed a significant concentration-dependent increase in angiotensin-converting enzyme-2 (ACE-2) following SP challenge. um-PEA concentration-dependently reduced all the analyzed proinflammatory markers fostering a parallel downregulation of ACE-2. Our data show for the first time that um-PEA, via PPAR-α, markedly inhibits the SP induced NLRP3 signalling pathway outlining a novel mechanism of action of this lipid against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...