Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 19(6): 7937-58, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24927365

ABSTRACT

In this work, the volatile fraction of unsmoked and smoked Herreño cheese, a type of soft cheese from the Canary Islands, has been characterized for the first time. In order to evaluate if the position in the smokehouse could influence the volatile profile of the smoked variety, cheeses smoked at two different heights were studied. The volatile components were extracted by Solid Phase Microextraction using a divinylbenzene/carboxen/ polydimethylsiloxane fiber, followed by Gas Chromatography/Mass Spectrometry. In total, 228 components were detected. The most numerous groups of components in the unsmoked Herreño cheese were hydrocarbons, followed by terpenes and sesquiterpenes, whereas acids and ketones were the most abundant. It is worth noticing the high number of aldehydes and ketones, and the low number of alcohols and esters in this cheese in relation to others, as well as the presence of some specific unsaturated hydrocarbons, terpenes, sesquiterpenes and nitrogenated derivatives. The smoking process enriches the volatile profile of Herreño cheese with ketones and diketones, methyl esters, aliphatic and aromatic aldehydes, hydrocarbons, terpenes, nitrogenated compounds, and especially with ethers and phenolic derivatives. Among these, methylindanones or certain terpenes like α-terpinolene, have not been detected previously in other types of smoked cheese. Lastly, the results obtained suggest a slightly higher smoking degree in the cheeses smoked at a greater height.


Subject(s)
Cheese/analysis , Alcohols/analysis , Aldehydes/analysis , Gas Chromatography-Mass Spectrometry , Hydrocarbons/analysis , Ketones/analysis , Sesquiterpenes/analysis , Solid Phase Microextraction , Terpenes/analysis
2.
J Agric Food Chem ; 56(6): 2028-33, 2008 Mar 26.
Article in English | MEDLINE | ID: mdl-18318493

ABSTRACT

Solid phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) of the headspace composition of two sunflower oil samples was carried out; both samples were taken from the same original oil, stored for a prolonged time (112 months) in closed containers at room temperature under different air/oil volume ratios. Great differences in the headspace compositions of both samples were found due to the different oxidation levels reached. One of the most significant findings is that both contain monocyclic and light polycyclic aromatic hydrocarbons, the proportions of which are in line with the oxidation level of the sample. The determination of polycyclic aromatic compounds in the oil liquid matrix of both oil samples, carried out by means of a classical scheme of isolation, cleanup, separation, and quantification, showed that the concentrations of these compounds in the oil liquid phase also follow the oxidation degree reached by each sample, proving that this oxidation process at room temperature leads to the formation of these compounds.


Subject(s)
Dietary Fats, Unsaturated/analysis , Food Packaging , Polycyclic Aromatic Hydrocarbons/chemical synthesis , Gas Chromatography-Mass Spectrometry , Oxidation-Reduction , Plant Oils/chemistry , Sunflower Oil , Temperature , Time Factors
3.
J Agric Food Chem ; 52(7): 2123-32, 2004 Apr 07.
Article in English | MEDLINE | ID: mdl-15053562

ABSTRACT

The occurrence of polycyclic aromatic hydrocarbons (PAHs) in five samples of olive pomace oil has been studied to determine the contamination degree of this type of oil and to evaluate if specific purification steps must be introduced during its manufacture. The PAHs present have been determined by gas chromatography-mass spectrometry. A high number of PAHs, with a wide range of molecular weights and in very high concentrations, have been found in four of the samples studied. A very high number of alkyl derivatives and, in many cases, in higher concentrations than their respective parent PAHs, have also been identified. One of the samples, however, presents a more reduced number of PAHs and in significantly lower concentrations than the others. These findings reveal that it is necessary to introduce adequate cleanup steps in the manufacturing process of olive pomace oil, which can give rise to oils with a relatively low content of PAHs. Some carcinogenic PAHs have also been identified, both unalkylated and alkylated.


Subject(s)
Plant Oils/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Carcinogens/analysis , Gas Chromatography-Mass Spectrometry , Olive Oil
SELECTION OF CITATIONS
SEARCH DETAIL
...