Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 13(621): eaav7223, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34818056

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death worldwide. Inhalation of cigarette smoke (CS) is the major cause in developed countries. Current therapies have limited efficacy in controlling disease or halting its progression. Aberrant expression of microRNAs (miRNAs) is associated with lung disease, including COPD. We performed miRNA microarray analyses of the lungs of mice with CS-induced experimental COPD. miR-21 was the second highest up-regulated miRNA, particularly in airway epithelium and lung macrophages. Its expression in human lung tissue correlated with reduced lung function in COPD. Prophylactic and therapeutic treatment with a specific miR-21 inhibitor (Ant-21) inhibited CS-induced lung miR-21 expression in mice; suppressed airway macrophages, neutrophils, and lymphocytes; and improved lung function, as evidenced by decreased lung hysteresis, transpulmonary resistance, and tissue damping in mouse models of COPD. In silico analyses identified a potential miR-21/special AT-rich sequence­binding protein 1 (SATB1)/S100 calcium binding protein A9 (S100A9)/nuclear factor κB (NF-κB) axis, which was further investigated. CS exposure reduced lung SATB1 in a mouse model of COPD, whereas Ant-21 treatment restored SATB1 and reduced S100A9 expression and NF-κB activity. The beneficial effects of Ant-21 in mice were reversed by treatment with SATB1-targeting small interfering RNA. We have identified a pathogenic role for a miR-21/SATB1/S100A9/NF-κB axis in COPD and defined miR-21 as a therapeutic target for this disease.


Subject(s)
Calgranulin B , Matrix Attachment Region Binding Proteins , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Animals , Calgranulin B/genetics , Calgranulin B/metabolism , Lung/pathology , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism
2.
J Exp Med ; 207(1): 155-71, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20048285

ABSTRACT

Engagement of cytokine receptors by specific ligands activate Janus kinase-signal transducer and activator of transcription (STAT) signaling pathways. The exact roles of STATs in human lymphocyte behavior remain incompletely defined. Interleukin (IL)-21 activates STAT1 and STAT3 and has emerged as a potent regulator of B cell differentiation. We have studied patients with inactivating mutations in STAT1 or STAT3 to dissect their contribution to B cell function in vivo and in response to IL-21 in vitro. STAT3 mutations dramatically reduced the number of functional, antigen (Ag)-specific memory B cells and abolished the ability of IL-21 to induce naive B cells to differentiate into plasma cells (PCs). This resulted from impaired activation of the molecular machinery required for PC generation. In contrast, STAT1 deficiency had no effect on memory B cell formation in vivo or IL-21-induced immunoglobulin secretion in vitro. Thus, STAT3 plays a critical role in generating effector B cells from naive precursors in humans. STAT3-activating cytokines such as IL-21 thus underpin Ag-specific humoral immune responses and provide a mechanism for the functional antibody deficit in STAT3-deficient patients.


Subject(s)
Cell Differentiation/physiology , Immunologic Memory/physiology , Interleukins/immunology , Plasma Cells/immunology , STAT3 Transcription Factor/immunology , Signal Transduction/physiology , Antibody Formation/physiology , Antigens/genetics , Antigens/immunology , Humans , Immunoglobulins/genetics , Immunoglobulins/immunology , Interleukins/genetics , Plasma Cells/cytology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , STAT3 Transcription Factor/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...