Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948825

ABSTRACT

Cascade is a class 1, type 1 CRISPR-Cas system with a variety of roles in prokaryote defense, specifically against DNA-based viruses. The Vibrio Cholerae transposon, Tn6677, encodes a variant of the type 1F Cascade known as type 1F-3. This Cascade variant complexes with a homodimer of the transposition protein TniQ and leverages the sequence specificity of Cascade to direct the integration activity of the heteromeric transposase tnsA/B, resulting in site-specific transposition of Tn6677. We desire to uncover the molecular details behind R Loop formation of 'Cascade-TniQ.' Due to the lack of a complete model of Cascade-TniQ available at atom-level resolution, we first build a complete model using AlphaFold V2.1. We then simulate this model via classical molecular dynamics and umbrella sampling to study an important regulatory component within Cascade-TniQ, known as the Cas8 'bundle.' Particularly, we show that this alpha helical bundle experiences a free energy barrier to its large-scale translatory motions and relative free energies of its states primarily dependent on a loop within a Cas7 subunit in Cascade-TniQ. Further, we comment on additional structural and dynamical regulatory points of Cascade-TniQ during R Loop formation, such as Cascade-TniQ backbone rigidity, and the potential role TniQ plays in regulating bundle dynamics. In summary, our outcomes provide the first all-atom dynamic representation of one of the largest CRISPR systems, with information that can contribute to understanding the mechanism of nucleic acid binding and, eventually, to transposase recruitment itself. Such information may prove informative to advance genome engineering efforts.

2.
Mol Cell ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38955179

ABSTRACT

The specific nature of CRISPR-Cas12a makes it a desirable RNA-guided endonuclease for biotechnology and therapeutic applications. To understand how R-loop formation within the compact Cas12a enables target recognition and nuclease activation, we used cryo-electron microscopy to capture wild-type Acidaminococcussp. Cas12a R-loop intermediates and DNA delivery into the RuvC active site. Stages of Cas12a R-loop formation-starting from a 5-bp seed-are marked by distinct REC domain arrangements. Dramatic domain flexibility limits contacts until nearly complete R-loop formation, when the non-target strand is pulled across the RuvC nuclease and coordinated domain docking promotes efficient cleavage. Next, substantial domain movements enable target strand repositioning into the RuvC active site. Between cleavage events, the RuvC lid conformationally resets to occlude the active site, requiring re-activation. These snapshots build a structural model depicting Cas12a DNA targeting that rationalizes observed specificity and highlights mechanistic comparisons to other class 2 effectors.

3.
Int J Biol Macromol ; 273(Pt 2): 132892, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878921

ABSTRACT

TASK-3 generates a background K+ conductance which when inhibited by acidification depolarizes membrane potential and increases cell excitability. These channels sense pH by protonation of histidine residue H98, but recent evidence revealed that several other amino acid residues also contribute to TASK-3 pH sensitivity, suggesting that the pH sensitivity is determined by an intermolecular network. Here we use electrophysiology and molecular modeling to characterize the nature and requisite role(s) of multiple amino acids in pH sensing by TASK-3. Our results suggest that the pH sensor H98 and consequently pH sensitivity is influenced by remote amino acids that function as a hydrogen-bonding network to modulate ionic conductivity. Among the residues in the network, E30 and K79 are the most important for passing external signals near residue S31 to H98. The hydrogen-bond network plays a key role in selectivity or pH sensing in mTASK-3, and E30 and S31 in the network can modulate the conductive properties (E30) or reverse the pH sensitivity and selectivity of the channel (S31). Molecular dynamics simulations and pK1/2 calculation revealed that double mutants involving H98 + S31 primarily regulate the structure stability of the pore selectivity filter and pore loop regions, further strengthen the stability of the cradle suspension system, and alter the ionization state of E30 and K79, thereby preventing pore conformational change that normally occurs in response to varying extracellular pH. These results demonstrate that crucial residues in the hydrogen-bond network can remotely tune the pH sensing of mTASK-3 and may be a potential allosteric regulatory site for therapeutic molecule development.


Subject(s)
Hydrogen Bonding , Molecular Dynamics Simulation , Potassium Channels, Tandem Pore Domain , Hydrogen-Ion Concentration , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Humans , Mutation , Animals
4.
Nat Commun ; 15(1): 3324, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637512

ABSTRACT

CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6-8. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes.


Subject(s)
CRISPR-Associated Proteins , RNA, Catalytic , RNA/metabolism , RNA, Catalytic/metabolism , CRISPR-Cas Systems/genetics , DNA/metabolism , Catalytic Domain , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , RNA Cleavage
5.
Sci Adv ; 10(10): eadl1045, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446895

ABSTRACT

The high-fidelity (HF1), hyper-accurate (Hypa), and evolved (Evo) variants of the CRISPR-associated protein 9 (Cas9) endonuclease are critical tools to mitigate off-target effects in the application of CRISPR-Cas9 technology. The mechanisms by which mutations in recognition subdomain 3 (Rec3) mediate specificity in these variants are poorly understood. Here, solution nuclear magnetic resonance and molecular dynamics simulations establish the structural and dynamic effects of high-specificity mutations in Rec3, and how they propagate the allosteric signal of Cas9. We reveal conserved structural changes and dynamic differences at regions of Rec3 that interface with the RNA:DNA hybrid, transducing chemical signals from Rec3 to the catalytic His-Asn-His (HNH) domain. The variants remodel the communication sourcing from the Rec3 α helix 37, previously shown to sense target DNA complementarity, either directly or allosterically. This mechanism increases communication between the DNA mismatch recognition helix and the HNH active site, shedding light on the structure and dynamics underlying Cas9 specificity and providing insight for future engineering principles.


Subject(s)
CRISPR-Cas Systems , Communication , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9 , Catalysis , DNA/genetics
6.
Nat Commun ; 15(1): 1473, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368461

ABSTRACT

CRISPR-Cas12a is a powerful RNA-guided genome-editing system that generates double-strand DNA breaks using its single RuvC nuclease domain by a sequential mechanism in which initial cleavage of the non-target strand is followed by target strand cleavage. How the spatially distant DNA target strand traverses toward the RuvC catalytic core is presently not understood. Here, continuous tens of microsecond-long molecular dynamics and free-energy simulations reveal that an α-helical lid, located within the RuvC domain, plays a pivotal role in the traversal of the DNA target strand by anchoring the crRNA:target strand duplex and guiding the target strand toward the RuvC core, as also corroborated by DNA cleavage experiments. In this mechanism, the REC2 domain pushes the crRNA:target strand duplex toward the core of the enzyme, while the Nuc domain aids the bending and accommodation of the target strand within the RuvC core by bending inward. Understanding of this critical process underlying Cas12a activity will enrich fundamental knowledge and facilitate further engineering strategies for genome editing.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , DNA/genetics , Gene Editing , Catalysis
7.
Nucleic Acids Res ; 52(2): 906-920, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38033317

ABSTRACT

Cas13a is a recent addition to the CRISPR-Cas toolkit that exclusively targets RNA, which makes it a promising tool for RNA detection. It utilizes a CRISPR RNA (crRNA) to target RNA sequences and trigger a composite active site formed by two 'Higher Eukaryotes and Prokaryotes Nucleotide' (HEPN) domains, cleaving any solvent-exposed RNA. In this system, an intriguing form of allosteric communication controls the RNA cleavage activity, yet its molecular details are unknown. Here, multiple-microsecond molecular dynamics simulations are combined with graph theory to decipher this intricate activation mechanism. We show that the binding of a target RNA acts as an allosteric effector, by amplifying the communication signals over the dynamical noise through interactions of the crRNA at the buried HEPN1-2 interface. By introducing a novel Signal-to-Noise Ratio (SNR) of communication efficiency, we reveal critical allosteric residues-R377, N378, and R973-that rearrange their interactions upon target RNA binding. Alanine mutation of these residues is shown to select target RNA over an extended complementary sequence beyond guide-target duplex for RNA cleavage, establishing the functional significance of these hotspots. Collectively our findings offer a fundamental understanding of the Cas13a mechanism of action and pave new avenues for the development of highly selective RNA-based cleavage and detection tools.


Subject(s)
CRISPR-Associated Proteins , RNA, Guide, CRISPR-Cas Systems , Allosteric Regulation , CRISPR-Cas Systems , Mutation , RNA/genetics , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism
8.
Nucleic Acids Res ; 52(2): 921-939, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38033324

ABSTRACT

An increasingly pressing need for clinical diagnostics has required the development of novel nucleic acid-based detection technologies that are sensitive, fast, and inexpensive, and that can be deployed at point-of-care. Recently, the RNA-guided ribonuclease CRISPR-Cas13 has been successfully harnessed for such purposes. However, developing assays for detection of genetic variability, for example single-nucleotide polymorphisms, is still challenging and previously described design strategies are not always generalizable. Here, we expanded our characterization of LbuCas13a RNA-detection specificity by performing a combination of experimental RNA mismatch tolerance profiling, molecular dynamics simulations, protein, and crRNA engineering. We found certain positions in the crRNA-target-RNA duplex that are particularly sensitive to mismatches and establish the effect of RNA concentration in mismatch tolerance. Additionally, we determined that shortening the crRNA spacer or modifying the direct repeat of the crRNA leads to stricter specificities. Furthermore, we harnessed our understanding of LbuCas13a allosteric activation pathways through molecular dynamics and structure-guided engineering to develop novel Cas13a variants that display increased sensitivities to single-nucleotide mismatches. We deployed these Cas13a variants and crRNA design strategies to achieve superior discrimination of SARS-CoV-2 strains compared to wild-type LbuCas13a. Together, our work provides new design criteria and Cas13a variants to use in future easier-to-implement Cas13-based RNA detection applications.


Subject(s)
RNA, Guide, CRISPR-Cas Systems , RNA , RNA/genetics , CRISPR-Cas Systems
9.
Int J Mol Sci ; 24(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38069093

ABSTRACT

Snakebite is considered a concerning issue and a neglected tropical disease. Three-finger toxins (3FTxs) in snake venoms primarily cause neurotoxic effects since they have high affinity for nicotinic acetylcholine receptors (nAChRs). Their small molecular size makes 3FTxs weakly immunogenic and therefore not appropriately targeted by current antivenoms. This study aims at presenting and applying an analytical method for investigating the therapeutic potential of the acetylcholine-binding protein (AChBP), an efficient nAChR mimic that can capture 3FTxs, for alternative treatment of elapid snakebites. In this analytical methodology, snake venom toxins were separated and characterised using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and high-throughput venomics. By subsequent nanofractionation analytics, binding profiling of toxins to the AChBP was achieved with a post-column plate reader-based fluorescence-enhancement ligand displacement bioassay. The integrated method was established and applied to profiling venoms of six elapid snakes (Naja mossambica, Ophiophagus hannah, Dendroaspis polylepis, Naja kaouthia, Naja haje and Bungarus multicinctus). The methodology demonstrated that the AChBP is able to effectively bind long-chain 3FTxs with relatively high affinity, but has low or no binding affinity towards short-chain 3FTxs, and as such provides an efficient analytical platform to investigate binding affinity of 3FTxs to the AChBP and mutants thereof and to rapidly identify bound toxins.


Subject(s)
Receptors, Nicotinic , Snake Bites , Toxins, Biological , Animals , Neurotoxins/toxicity , Elapid Venoms/chemistry , Acetylcholine , Three Finger Toxins , Snake Venoms , Elapidae/metabolism
10.
J Chem Inf Model ; 63(24): 7603-7604, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38143420

Subject(s)
DNA , RNA , DNA/genetics
11.
Biophys J ; 122(24): 4635-4644, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37936350

ABSTRACT

A hallmark of tightly regulated high-fidelity enzymes is that they become activated only after encountering cognate substrates, often by an induced-fit mechanism rather than conformational selection. Upon analysis of molecular dynamics trajectories, we recently discovered that the Cas9 HNH domain exists in three conformations: 1) Y836 (which is two residues away from the catalytic D839 and H840 residues) is hydrogen bonded to the D829 backbone amide, 2) Y836 is hydrogen bonded to the backbone amide of D861 (which is one residue away from the third catalytic residue N863), and 3) Y836 is not hydrogen bonded to either residue. Each of the three conformers differs from the active state of HNH. The conversion between the inactive and active states involves a local unfolding-refolding process that displaces the Cα and side chain of the catalytic N863 residue by ∼5 Å and ∼10 Å, respectively. In this study, we report the two largest principal components of coordinate variance of the HNH domain throughout molecular dynamics trajectories to establish the interconversion pathways of these conformations. We show that conformation 2 is an obligate step between conformations 1 and 3, which are not directly interconvertible without conformation 2. The loss of hydrogen bonding of the Y836 side chain in conformation 3 likely plays an essential role in activation during local unfolding-refolding of an α-helix containing the catalytic N863. Three single Lys-to-Ala mutants appear to eliminate this substrate-independent activation pathway of the wild-type HNH nuclease, thereby enhancing the fidelity of HNH cleavage.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Molecular Dynamics Simulation , Hydrogen/metabolism , Amides
12.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662375

ABSTRACT

The Cas9-HF1, HypaCas9, and evoCas9 variants of the Cas9 endonuclease are critical tools to mitigate off-target effects in the application of CRISPR-Cas9 technology. The mechanisms by which mutations in the Rec3 domain mediate specificity in these variants are poorly understood. Here, solution NMR and molecular dynamics simulations establish the structural and dynamic effects of high-specificity mutations in Rec3, and how they propagate the allosteric signal of Cas9. We reveal conserved structural changes and peculiar dynamic differences at regions of Rec3 that interface with the RNA:DNA hybrid, transducing chemical signals from Rec3 to the catalytic HNH domain. The variants remodel the communication sourcing from the Rec3 α-helix 37, previously shown to sense target DNA complementarity, either directly or allosterically. This mechanism increases communication between the DNA mismatch recognition helix and the HNH active site, shedding light on the structure and dynamics underlying Cas9 specificity and providing insight for future engineering principles.

13.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37546822

ABSTRACT

Cas13a is a recent addition to the CRISPR-Cas toolkit that exclusively targets RNA, which makes it a promising tool for RNA detection. The protein uses a CRISPR RNA (crRNA) to target RNA sequences, which are cleaved by a composite active site formed by two 'Higher Eukaryotes and Prokaryotes Nucleotide' (HEPN) catalytic domains. In this system, an intriguing form of allosteric communication controls RNA cleavage activity, yet its molecular details are unknown. Here, multiple-microsecond molecular dynamics simulations are combined with graph theory and RNA cleavage assays to decipher this activation mechanism. We show that the binding of a target RNA acts as an allosteric effector of the spatially distant HEPN catalytic cleft, by amplifying the allosteric signals over the dynamical noise, that passes through the buried HEPN interface. Critical residues in this region - N378, R973, and R377 - rearrange their interactions upon target RNA binding, and alter allosteric signalling. Alanine mutation of these residues is experimentally shown to select target RNA over an extended complementary sequence beyond guide-target duplex, for RNA cleavage. Altogether, our findings offer a fundamental understanding of the Cas13a mechanism of action and pave new avenues for the development of more selective RNA-based cleavage and detection tools.

14.
bioRxiv ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37547020

ABSTRACT

The pressing need for clinical diagnostics has required the development of novel nucleic acid-based detection technologies that are sensitive, fast, and inexpensive, and that can be deployed at point-of-care. Recently, the RNA-guided ribonuclease CRISPR-Cas13 has been successfully harnessed for such purposes. However, developing assays for detection of genetic variability, for example single-nucleotide polymorphisms, is still challenging and previously described design strategies are not always generalizable. Here, we expanded our characterization of LbuCas13a RNA-detection specificity by performing a combination of experimental RNA mismatch tolerance profiling, molecular dynamics simulations, protein, and crRNA engineering. We found certain positions in the crRNA-target-RNA duplex that are particularly sensitive to mismatches and establish the effect of RNA concentration in mismatch tolerance. Additionally, we determined that shortening the crRNA spacer or modifying the direct repeat of the crRNA leads to stricter specificities. Furthermore, we harnessed our understanding of LbuCas13a allosteric activation pathways through molecular dynamics and structure-guided engineering to develop novel Cas13a variants that display increased sensitivities to single-nucleotide mismatches. We deployed these Cas13a variants and crRNA design strategies to achieve superior discrimination of SARS-CoV-2 strains compared to wild-type LbuCas13a. Together, our work provides new design criteria and new Cas13a variants for easier-to-implement Cas13-based diagnostics. KEY POINTS: Certain positions in the Cas13a crRNA-target-RNA duplex are particularly sensitive to mismatches.Understanding Cas13a's allosteric activation pathway allowed us to develop novel high-fidelity Cas13a variants.These Cas13a variants and crRNA design strategies achieve superior discrimination of SARS-CoV-2 strains.

16.
Res Sq ; 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37163044

ABSTRACT

CRISPR-Cas systems are an adaptive immune system in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes; however, the mechanism has remained enigmatic6,7. Here, we determine the structures of the Synechocystis type III-Dv complex, an evolutionary intermediate in type III effectors8,9, in pre- and post-cleavage states, which show metal ion coordination in the active sites. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we reveal the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Thus, type III CRISPR-Cas complexes function as protein-assisted ribozymes, and their programmable nature has important implications for how these complexes could be repurposed for applications.

17.
J Chem Theory Comput ; 19(7): 1945-1964, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36947696

ABSTRACT

Macromolecular machines acting on genes are at the core of life's fundamental processes, including DNA replication and repair, gene transcription and regulation, chromatin packaging, RNA splicing, and genome editing. Here, we report the increasing role of computational biophysics in characterizing the mechanisms of "machines on genes", focusing on innovative applications of computational methods and their integration with structural and biophysical experiments. We showcase how state-of-the-art computational methods, including classical and ab initio molecular dynamics to enhanced sampling techniques, and coarse-grained approaches are used for understanding and exploring gene machines for real-world applications. As this review unfolds, advanced computational methods describe the biophysical function that is unseen through experimental techniques, accomplishing the power of the "computational microscope", an expression coined by Klaus Schulten to highlight the extraordinary capability of computer simulations. Pushing the frontiers of computational biophysics toward a pragmatic representation of large multimegadalton biomolecular complexes is instrumental in bridging the gap between experimentally obtained macroscopic observables and the molecular principles playing at the microscopic level. This understanding will help harness molecular machines for medical, pharmaceutical, and biotechnological purposes.


Subject(s)
Nucleosomes , Humans , Nucleosomes/chemistry , Molecular Dynamics Simulation , DNA Replication , DNA Repair , RNA Splicing , Spliceosomes , Transcription, Genetic , Gene Editing
18.
Electron Struct ; 5(1)2023 Mar.
Article in English | MEDLINE | ID: mdl-36926635

ABSTRACT

Genome editing based on the CRISPR-Cas9 system has paved new avenues for medicine, pharmaceutics, biotechnology, and beyond. This article reports the role of first-principles (ab-initio) molecular dynamics (MD) in the CRISPR-Cas9 revolution, achieving a profound understanding of the enzymatic function and offering valuable insights for enzyme engineering. We introduce the methodologies and explain the use of ab-initio MD simulations to characterize the two-metal dependent mechanism of DNA cleavage in the RuvC domain of the Cas9 enzyme, and how a second catalytic domain, HNH, cleaves the target DNA with the aid of a single metal ion. A detailed description of how ab-initio MD is combined with free-energy methods - i.e., thermodynamic integration and metadynamics - to break and form chemical bonds is given, explaining the use of these methods to determine the chemical landscape and establish the catalytic mechanism in CRISPR-Cas9. The critical role of classical methods is also discussed, explaining theory and application of constant pH MD simulations, used to accurately predict the catalytic residues' protonation states. Overall, first-principles methods are shown to unravel the electronic structure of the Cas9 enzyme, providing valuable insights that can serve for the design of genome editing tools with improved catalytic efficiency or controllable activity.

19.
Molecules ; 28(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36770943

ABSTRACT

Metadynamics calculations of large chemical systems with ab initio methods are computationally prohibitive due to the extensive sampling required to simulate the large degrees of freedom in these systems. To address this computational bottleneck, we utilized a GPU-enhanced density functional tight binding (DFTB) approach on a massively parallelized cloud computing platform to efficiently calculate the thermodynamics and metadynamics of biochemical systems. To first validate our approach, we calculated the free-energy surfaces of alanine dipeptide and showed that our GPU-enhanced DFTB calculations qualitatively agree with computationally-intensive hybrid DFT benchmarks, whereas classical force fields give significant errors. Most importantly, we show that our GPU-accelerated DFTB calculations are significantly faster than previous approaches by up to two orders of magnitude. To further extend our GPU-enhanced DFTB approach, we also carried out a 10 ns metadynamics simulation of remdesivir, which is prohibitively out of reach for routine DFT-based metadynamics calculations. We find that the free-energy surfaces of remdesivir obtained from DFTB and classical force fields differ significantly, where the latter overestimates the internal energy contribution of high free-energy states. Taken together, our benchmark tests, analyses, and extensions to large biochemical systems highlight the use of GPU-enhanced DFTB simulations for efficiently predicting the free-energy surfaces/thermodynamics of large biochemical systems.

20.
J Chem Phys ; 157(22): 225103, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36546784

ABSTRACT

Allosteric signaling within multidomain proteins is a driver of communication between spatially distant functional sites. Understanding the mechanism of allosteric coupling in large multidomain proteins is the most promising route to achieving spatial and temporal control of the system. The recent explosion of CRISPR-Cas9 applications in molecular biology and medicine has created a need to understand how the atomic level protein dynamics of Cas9, which are the driving force of its allosteric crosstalk, influence its biophysical characteristics. In this study, we used a synergistic approach of nuclear magnetic resonance (NMR) and computation to pinpoint an allosteric hotspot in the HNH domain of the thermostable GeoCas9. We show that mutation of K597 to alanine disrupts a salt-bridge network, which in turn alters the structure, the timescale of allosteric motions, and the thermostability of the GeoHNH domain. This homologous lysine-to-alanine mutation in the extensively studied mesophilic S. pyogenes Cas9 similarly alters the dynamics of the SpHNH domain. We have previously demonstrated that the alteration of allostery via mutations is a source for the specificity enhancement of SpCas9 (eSpCas9). Hence, this may also be true in GeoCas9.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , DNA Cleavage , Static Electricity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...