Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 2038, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795683

ABSTRACT

Wild-type KRAS (KRASWT) amplification has been shown to be a secondary means of KRAS activation in cancer and associated with poor survival. Nevertheless, the precise role of KRASWT overexpression in lung cancer progression is largely unexplored. Here, we identify and characterize a KRAS-responsive lncRNA, KIMAT1 (ENSG00000228709) and show that it correlates with KRAS levels both in cell lines and in lung cancer specimens. Mechanistically, KIMAT1 is a MYC target and drives lung tumorigenesis by promoting the processing of oncogenic microRNAs (miRNAs) through DHX9 and NPM1 stabilization while halting the biogenesis of miRNAs with tumor suppressor function via MYC-dependent silencing of p21, a component of the Microprocessor Complex. KIMAT1 knockdown suppresses not only KRAS expression but also KRAS downstream signaling, thereby arresting lung cancer growth in vitro and in vivo. Taken together, this study uncovers a role for KIMAT1 in maintaining a positive feedback loop that sustains KRAS signaling during lung cancer progression and provides a proof of principle that interfering with KIMAT1 could be a strategy to hamper KRAS-induced tumorigenesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins p21(ras)/genetics , RNA, Long Noncoding/genetics , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/therapy , Cell Line, Tumor , Female , Gene Expression Profiling/methods , Gene Ontology , Humans , Kaplan-Meier Estimate , Lung Neoplasms/metabolism , Lung Neoplasms/therapy , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Nucleophosmin , Proto-Oncogene Proteins p21(ras)/metabolism , Xenograft Model Antitumor Assays/methods
2.
EMBO Mol Med ; 12(7): e11099, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32558295

ABSTRACT

A subset of lung adenocarcinomas is driven by the EML4-ALK translocation. Even though ALK inhibitors in the clinic lead to excellent initial responses, acquired resistance to these inhibitors due to on-target mutations or parallel pathway alterations is a major clinical challenge. Exploring these mechanisms of resistance, we found that EML4-ALK cells parental or resistant to crizotinib, ceritinib or alectinib are remarkably sensitive to inhibition of CDK7/12 with THZ1 and CDK9 with alvocidib or dinaciclib. These compounds robustly induce apoptosis through transcriptional inhibition and downregulation of anti-apoptotic genes. Importantly, alvocidib reduced tumour progression in xenograft mouse models. In summary, our study takes advantage of the transcriptional addiction hypothesis to propose a new treatment strategy for a subset of patients with acquired resistance to first-, second- and third-generation ALK inhibitors.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/pharmacology , Transcription, Genetic/drug effects , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Female , Humans , Mice , Oncogene Proteins, Fusion/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use
3.
Cancer Lett ; 421: 152-160, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29476790

ABSTRACT

A plethora of tumours have characteristic oncogenic mutations which are the main causes of malignant transformation, exerting their effects through multiple signalling pathways. Downstream of such pathways, microRNAs are small non-coding RNAs that negatively regulate gene expression, assisting or antagonizing oncogenic signalling. The differential expression of microRNAs in cancer is well-documented and is considered a fundamental aspect of tumourigenesis. While data mapping the interaction between oncogenic lesions and microRNAs are accruing, we provide particular cases of such interaction. Except for notable, well-studied examples of microRNAs regulated by oncogenes, we examine the effect of this relationship in regard to tumour initiation, progression, metastasis and ultimately, its implications for the development of new therapeutics.


Subject(s)
MicroRNAs/genetics , Neoplasms/pathology , Neoplasms/therapy , Oncogenes , Disease Progression , Humans , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...