Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 7(4): e06780, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33997374

ABSTRACT

To study the feasibility of 16S rRNA metagenomics using next generation sequencing (NGS) along with broad range PCR assay for 762 bp region of 16S rRNA gene with Sanger's sequencing, in microbial diagnosis of culture negative endophthalmitis. Vitreous fluid from 16 culture negative and one culture positive endophthalmitis patients, admitted to a tertiary care hospital were processed for targeted metagenomics. NGS of 7 variable regions of 16S rRNA gene was done using Ion Torrent Personal Genome Machine (PGM). Sequence data were analyzed using Ion Reporter software using QIIME and BLSATN tools and Greengenes and NCBI-Genbank databases. Bacterial genome sequences were detected in 15 culture negative and culture positive vitreous specimens. The sequence reads varied between 25,245-540,916 with read length between 142bp-228bp and coverage depth was 41.0X and 81.2X. Operational taxonomic unit (OTUs) of multiple bacterial genera and species were detected in 13 culture negative vitreous specimens and OTUs of a single bacterial species were detected in 2 culture negative and 1 culture positive specimens; one negative specimen had no bacterial DNA. Maximum numbers of OTUs detected by NGS for a bacterial species from any vitreous specimen was the one which was detected and identified by Sanger's sequencing in broad range PCR. All the bacteria were belonging to clinically relevant species. Broad range PCR with sequencing failed to identify bacteria from 5 of the 16 (31.25%) culture negative vitreous specimens. Metagenomics could detect and identify bacterial pathogens in 15 of the 16 culture negative vitreous specimen's up to species level. With rapidly decreasing cost, metagenomics has a potential to be used widely in endophthalmitis diagnosis, in which culture negativity is usually high.

2.
Exp Gerontol ; 150: 111358, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33872736

ABSTRACT

INTRODUCTION: Sarcopenia is the loss of skeletal muscle mass and function. It is a major health issue in old age due to lack of understanding of the origin and molecular mechanism. Altered dietary pattern, sedentary lifestyle and physical inactivity have shown adverse effect of skeletal muscle function. Sedentary behaviour and low protein intake have been well associated with sarcopenia. Here, we aim to develop Sarcopenia mimicking murine model to observe the physiological and biochemical changes with physical activity intervention. We also intended to find the association of muscle stem cells and stress induced protein Sestrins in the developed sarcopenic model. METHODS: Male C57BL/6 mice were categorized into 4 groups: young-control (Y-Cntrl), aged-matched control (A-Cntrl), Sarcopenic-model (SAR-model) and Sarcopenic intervention group (SAR-INT) with physical exercises. SAR-model group was kept in a retrofitted confined cage for sedentary lifestyle and was fed with protein-restricted diet. Phenotypic assessment for body mass, grip strength and functional endurance was analysed to confirm the sarcopenic state. Mitochondrial enzymatic assessment, muscle stem cell (MuSCs) proliferation potential and protein quantification of Sestrins expression were performed by enzyme histochemistry, flow cytometry and surface plasmon resonance (SPR), respectively. SAR-model group was given 10 weeks physical activity intervention to assess the physiological and biochemical changes. RESULTS: Simultaneous implementation of physical inactivity by sedentary confinement and protein restricted diet led the animals to exhibit the features of sarcopenia. SAR-model group showed a decline of 8.6% (p < 0.0001) in the body weight assessment, 32% decline (p < 0.0001) in the grip strength, 28% increase in time elapsed (p < 0.0001) indicating decline in functional performance. Mitochondrial enzymes (ATPase, NADH-TR and SDH/COX) assessment exhibited low expression in SAR-model group. Ki67 positive muscle stem cell declines around 50% in the model group. SPR quantification of Sestrin 2 showed a decline of 14% which significantly improved to 28% upon physical activity intervention (p = 0.0025) in SAR-INT group. CONCLUSION: It can be summarized that the mouse model generated in the present study mimics the feature of human Sarcopenia. Physical activity intervention may improve the sarcopenic status via modulation of Sestrin 2 which can serve as potential molecule for therapeutic implication.


Subject(s)
Sarcopenia , Animals , Antioxidants , Male , Mice , Mice, Inbred C57BL , Muscle Strength , Muscle, Skeletal/pathology , Sarcopenia/pathology , Sestrins , Stem Cells
3.
PLoS One ; 12(11): e0187334, 2017.
Article in English | MEDLINE | ID: mdl-29091957

ABSTRACT

BACKGROUND: The biology of Hepatitis E Virus (HEV), a common cause of epidemic and sporadic hepatitis, is still being explored. HEV exits liver through bile, a process which is essential for its natural transmission by feco-oral route. Though the process of this polarised HEV egress is not known in detail, HEV pORF3 and hepatocyte actin cytoskeleton have been shown to play a role. METHODS: Our transcriptome analysis in Hepatitis E virus (HEV) replicon transfected Huh7 cells at 24 and 72 hrs indicated that at 24hrs, both LncBISPR and BST2, expressed by a bidirectional promoter were highly upregulated whereas at 72 hrs, BST2 expression was comparatively reduced accompanied by normal levels of BISPR. These findings were confirmed by qPCR analysis. Co-localisation of BST2 and HEV pORF2 was confirmed in HEV transfected Huh7 by confocal microscopy. To investigate the role of BISPR/BST2 in HEV life cycle, particularly virus egress, we generated Huh7 cells with ~8kb deletion in BISPR gene using Crispr-Cas9 system. The deletion was confirmed by PCR screening, Sanger sequencing and Real time PCR. Virus egress in ΔBISPR Huh7 and Huh7 cells was compared by measuring HEV positive strand RNA copy numbers in cell lysates and culture supernatants at 24 and 72 hrs post HEV replicon transfection and further validated by western blot for HEV pORF2 capsid protein. RESULTS: ΔBISPR Huh7 cells showed ~8 fold increase in virus egress at 24 hrs compared to Huh7 cells. No significant difference in virus egress was observed at 72hrs. Immunohistochemistry in histologically normal liver and HEV associated acute liver failure revealed BST2 overexpression in HEV infected hepatocytes and a dominant canalicular BST2 distribution in normal liver in addition to the cytoplasmic localisation reported in literature. CONCLUSIONS: These findings lead us to believe that BISPR and BST2 may regulate egress of HEV virions into bile in vivo. This system may also be used to scale up virus production in vitro.


Subject(s)
Antigens, CD/physiology , Hepatitis E virus/physiology , Interferons/physiology , RNA, Long Noncoding/genetics , Bile/virology , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , GPI-Linked Proteins/physiology , Hepatitis E virus/genetics , Hepatocytes/virology , Humans , Open Reading Frames , Polymerase Chain Reaction , Sequence Analysis, RNA/methods , Virion
4.
J Nanobiotechnology ; 13: 44, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26104584

ABSTRACT

BACKGROUND: Assembled virus-like particles (VLPs) without genetic material, with structure similar to infectious virions, have been successfully used as vaccines. We earlier described in vitro assembly, characterisation and tissue specific receptor dependent Clathrin mediated entry of empty HEV VLPs, produced from Escherichia coli expressed HEV capsid protein (pORF2). Similar VLP's have been described as a potential candidate vaccine (Hecolin) against HEV. FINDINGS: We have attempted to use such recombinant assembled Hepatitis E virus (HEV) VLPs as a carrier for heterologous RNA with protein coding sequence fused in-frame with HEV 5' region (containing cap and encapsidation signal) and investigated, if the relevant protein could be expressed and elicit an immune response in vivo. In vitro transcribed red fluorescent protein (RFP)/Hepatitis B virus surface antigen (HBsAg) RNA, fused to 5'-HEV sequence with cap and encapsidation signal (1-249 nt), was packaged into the recombinant HEV-VLPs and incubated with five different cell lines (Huh7, A549, Vero, HeLa and SiHa). The pORF2-VLPs could specifically transfer exogenous coding RNA into Huh7 and A549 cells. In vivo, Balb/c mice were immunized (intramuscular injections) with 100 µg pORF2-VLP encapsidated with 5'-methyl-G-HEV (1-249 nt)-HBsAg RNA, blood samples were collected and screened by ELISA for anti-pORF2 and anti-HBsAg antibodies. Humoral immune response could be elicited in Balb/c mice against both HEV capsid protein and cargo RNA encoded HBsAg protein. CONCLUSIONS: These findings suggest that other than being a possible vaccine, HEV pORF2-VLPs can be used as a promising non-replicative tissue specific gene delivery system.


Subject(s)
Hepatitis B Surface Antigens/genetics , Hepatitis E virus/genetics , RNA/administration & dosage , RNA/genetics , Viral Proteins/genetics , Virion/genetics , Animals , Cell Line , Gene Transfer Techniques , Hepatitis B Surface Antigens/immunology , Hepatitis E virus/immunology , Humans , Immunity, Humoral , Immunization , Mice, Inbred BALB C , RNA/pharmacokinetics , Viral Proteins/immunology , Virion/immunology
5.
J Gen Virol ; 95(Pt 8): 1689-1700, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24795447

ABSTRACT

Hepatitis E virus (HEV), a major cause of acute viral hepatitis across the world, is a non-enveloped, plus-strand RNA virus. Its genome codes three proteins, pORF1 (multifunctional polyprotein), pORF2 (capsid protein) and pORF3 (multi-regulatory protein). pORF1 encodes methyltransferase, putative papain-like cysteine protease, helicase and replicase enzymes. Of these, the protease domain has not been characterized. On the basis of sequence analysis, we cloned and expressed a protein covering aa 440-610 of pORF1, expression of which led to cell death in Escherichia coli BL-21 and Huh7 hepatoma cells. Finally, we expressed and purified this protein from E. coli C43 cells (resistant to toxic proteins). The refolded form of this protein showed protease activity in gelatin zymography. Digestion assays showed cleavage of both pORF1 and pORF2 as observed previously. MS revealed digestion of capsid protein at both the N and C termini. N-terminal sequencing of the ~35 kDa methyltransferase, ~35 kDa replicase and ~56 kDa pORF2 proteins released by protease digestion revealed that the cleavage sites were alanine15/isoleucine16, alanine1364/valine1365 in pORF1 and leucine197/valine198 in pORF2. Specificity of these cleavage sites was validated by site-directed mutagenesis. Further characterization of the HEV protease, carried out using twelve inhibitors, showed chymostatin and PMSF to be the most efficient inhibitors, indicating this protein as a chymotrypsin-like protease. The specificity was further confirmed by cleavage of the chymotrypsin-specific fluorogenic peptide N-succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin. Mutational analysis of the conserved serine/cysteine/histidine residues suggested that H443 and C472/C481/C483 are possibly the active site residues. To our knowledge, this is the first direct demonstration of HEV protease and its function.


Subject(s)
Capsid Proteins/metabolism , Hepatitis E virus/enzymology , Peptide Hydrolases/metabolism , Protein Processing, Post-Translational , Viral Nonstructural Proteins/metabolism , Catalytic Domain , Cell Line , Cloning, Molecular , DNA Mutational Analysis , Escherichia coli/genetics , Gene Expression , Hepatitis E virus/genetics , Hepatocytes , Humans , Peptide Hydrolases/genetics
6.
Biochem Biophys Res Commun ; 422(4): 764-9, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22627130

ABSTRACT

Autophagy is a physiologically regulated and evolutionary conserved process that plays a critical role in degradation of cytoplasmic proteins and other macromolecules within the lysosomes. Beclin-1, the mammalian orthologue of yeast Atg6, is an important mediator of autophagy that has been studied in many human cancers. However, the expression of Beclin-1 has not yet been investigated in oral cancer. We for the first time investigated the expression of Beclin-1 in serum and tissues and correlated it with the clinic-pathological features of oral cancer patients. m-RNA expression of Beclin-1 was evaluated in tumor and normal areas of surgical specimens from 10 oral cancer patients by real-time PCR. Approximately, 8-fold lower expression (p<0.001) of Beclin-1 mRNA was observed in tumor tissue as compared to the normal tissue. Serum levels of Beclin-1 were evaluated by SPR and ELISA. No significant difference was observed in serum Beclin-1 levels in patients as compared to healthy subjects, similarly no correlation was found between serum levels and clinic-pathological parameters such as stage, lymph node involvement and tumor size. Our results demonstrate that down-regulation of Beclin-1 may play an important role in the development and progression of oral cancer possibly by dysregulation of autophagy in tumor cells.


Subject(s)
Apoptosis Regulatory Proteins/biosynthesis , Autophagy , Carcinoma, Squamous Cell/metabolism , Membrane Proteins/biosynthesis , Mouth Neoplasms/metabolism , Adult , Aged , Apoptosis Regulatory Proteins/blood , Beclin-1 , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/etiology , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Membrane Proteins/blood , Middle Aged , Mouth Neoplasms/blood , Mouth Neoplasms/etiology , Nicotiana/adverse effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...