Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e30715, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38774337

ABSTRACT

Ascorbic acid plays a significant role in regulation of various bodily functions with high concentrations in immune cells and being involved in connective tissue maintenance. Commonly it is detected through various colorimetric methods. In this study, we propose a one-step simple method based on the inhibitory activity of ascorbic acid on horseradish peroxidase and hydrogen peroxide. The detection is observed by colorimetric changes to TMB (3,3',5,5' tetramethylbenzidine). The enzyme inhibition unit was optimized with a high level of linearity (r2 = 0.9999) and the level of detection and level of quantification were found to be 1.35 nM and 4.08 nM, respectively with higher sensitive compared to the HPLC method (11 µM). Both intra and inter-assays showed high correlations at different AA concentrations. (r2 > 0.9999). Similar results were also observed for vitamin C tablets, ascorbate salts, fruits, and market products (r2 = 0.999). There was negligible effect of interference by citric acid, lactic acid, tartaric acids, and glucose with high recoveries (>98%) at 1 mg/mL to 0.0078 mg/mL concentration ranges. The recovery error (RE%) was found to be less than 10%. Our detection method is distinguished by its simplicity, nano-level of detection, reproducibility, and potential application and adaptability as a point-of-use test.

2.
Int J Pharm ; 655: 124031, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38521375

ABSTRACT

Tuberculosis (TB) is a serious health issue that contributes to millions of deaths throughout the world and increases the threat of serious pulmonary infections in patients with respiratory illness. Delamanid is a novel drug approved in 2014 to deal with multi-drug resistant TB (MDR-TB). Despite its high efficiency in TB treatment, delamanid poses delivery challenges due to poor water solubility leading to inadequate absorption upon oral administration. This study involves the development of novel formulation-based pressurized metered dose inhalers (pMDIs) containing self-microemulsifying mixtures of delamanid for efficient delivery to the lungs. To identify the appropriate self-microemulsifying formulations, ternary diagrams were plotted using different combinations of surfactant to co-surfactant ratios (1:1, 2:1, and 3:1). The combinations used Cremophor RH40, Poly Ethylene Glycol 400 (PEG 400), and peppermint oil, and those that showed the maximum microemulsion region and rapid and stable emulsification were selected for further characterization. The diluted self-microemulsifying mixtures underwent evaluation of dose uniformity, droplet size, zeta potential, and transmission electron microscopy. The selected formulations exhibited uniform delivery of the dose throughout the canister life, along with droplet sizes and zeta potentials that ranged from 24.74 to 88.99 nm and - 19.27 to - 10.00 mV, respectively. The aerosol performance of each self-microemulsifying drug delivery system (SMEDDS)-pMDI was assessed using the Next Generation Impactor, which indicated their capability to deliver the drug to the deeper areas of the lungs. In vitro cytotoxicity testing on A549 and NCI-H358 cells revealed no significant signs of toxicity up to a concentration of 1.56 µg/mL. The antimycobacterial activity of the formulations was evaluated against Mycobacterium bovis using flow cytometry analysis, which showed complete inhibition by day 5 with a minimum bactericidal concentration of 0.313 µg/mL. Moreover, the cellular uptake studies showed efficient delivery of the formulations inside macrophage cells, which indicated the potential for intracellular antimycobacterial activity. These findings demonstrated the potential of the Delamanid-SMEDDS-pMDI for efficient pulmonary delivery of delamanid to improve its effectiveness in the treatment of multi-drug resistant pulmonary TB.


Subject(s)
Nitroimidazoles , Oxazoles , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Humans , Lung , Metered Dose Inhalers , Tuberculosis, Multidrug-Resistant/drug therapy , Surface-Active Agents , Solubility , Drug Delivery Systems , Emulsions , Biological Availability
3.
Ann Pharm Fr ; 81(6): 997-1006, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708992

ABSTRACT

The modified solvent removal method was used to encapsulate metformin hydrochloride (MH) within poly(lactic-co-glycolic acid) (PLGA) microspheres. The study investigated the effect of varying polymer concentrations on the loading and release of the drug from the microspheres. The encapsulation process involved using a double emulsion method, resulting in microspheres with particle diameters ranging from approximately 4.4µm to 2.7µm. The study achieved high encapsulation efficiencies, ranging from 81% to 90%, with drug loadings ranging from 18% to 11%. The release of the drug from the microspheres followed a biphasic pattern over 24 days, with nearly complete release by the end of the study period. Fourier transform infrared spectroscopy (FTIR) analysis indicated that there were no notable differences between PLGA and MH-loaded microspheres, suggesting minimal interactions between MH and PLGA. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques were used to investigate the state of the MH within the microspheres. The results suggested that the MH was dispersed at a molecular level within the spheres and existed in an amorphous state. This amorphous state of the drug may explain the slow and prolonged release observed in the study.

4.
Drug Discov Today ; 28(10): 103729, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37532219

ABSTRACT

Cystic fibrosis (CF), a fatal genetic condition, causes thick, sticky mucus. It also causes pancreatic dysfunction, bacterial infection, and increased salt loss. Currently available treatments can improve the patient's quality of life. Drug delivery aided by nanotechnology has been explored to alter the pharmacokinetics and toxicity of drugs. In this short review, we aim to summarize various conventional formulations and highlight advanced formulations delivered via the pulmonary route for the treatment of CF. There is considerable interest in advanced drug delivery formulations addressing the various challenges posed by CF. Despite their potential to be translated for clinical use, we anticipate that a significant amount of effort may still be required for translation to the clinic.

5.
J Biomol Struct Dyn ; : 1-12, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37434318

ABSTRACT

The binding interaction of cannabidiol (CBD) and human serum albumin (HSA) under physiological blood pH conditions (pH 7.4) was conducted by surface plasmon resonance (SPR), fluorescence spectroscopy, UV-Visible spectrophotometry, and molecular docking. The responses from SPR measurement increased with the increase in CBD concentration until equilibrium was reached at the equilibrium dissociation constant (KD) of 9.8 × 10-4 M. The results from fluorescence and UV-Visible spectroscopy showed that CBD bound to HSA at one site in a spontaneous manner to form protein-CBD complexes. The quenching process involved both static and dynamic mechanisms while the static mechanism contributed predominantly to the binding between CBD and albumin. The binding constants estimated from the fluorescence studies were from 0.16 × 103 to 8.10 × 103 M-1, which were calculated at different temperature conditions using Stern-Volmer plots. The thermodynamic parameters demonstrated that the binding interaction was a spontaneous reaction as Gibbs free energy had negative values (ΔG = -12.57 to -23.20 kJ.mol-1). Positive ΔH and ΔS values (ΔH = 2.46 × 105 J.mol-1 and ΔS = 869.81 J.mol-1K-1) indicated that the hydrophobic force was the major binding interaction. Finally, confirmation of the type and extent of interaction was provided using UV-spectroscopy and molecular docking studies. The outcomes of this study are expected to serve as a platform to conduct future studies on binding interactions and toxicological research of CBD.Communicated by Ramaswamy H. Sarma.

6.
Front Bioeng Biotechnol ; 11: 1190879, 2023.
Article in English | MEDLINE | ID: mdl-37274159

ABSTRACT

Chito-oligosaccharides (COS), derived from chitosan (CH), are attracting increasing attention as drug delivery carriers due to their biocompatibility, biodegradability, and mucoadhesive properties. Grafting, the process of chemically modifying CH/COS by adding side chains, has been used to improve their drug delivery performance by enhancing their stability, targeted delivery, and controlled release. In this review, we aim to provide an in-depth study on the recent advances in the grafting of CH/COS for multifarious applications. Moreover, the various strategies and techniques used for grafting, including chemical modification, enzymatic modification, and physical modification, are elaborated. The properties of grafted CH/COS, such as stability, solubility, and biocompatibility, were reported. Additionally, the review detailed the various applications of grafted CH/COS in drug delivery, including the delivery of small drug molecule, proteins, and RNA interference therapeutics. Furthermore, the effectiveness of grafted CH/COS in improving the pharmacokinetics and pharmacodynamics of drugs was included. Finally, the challenges and limitations associated with the use of grafted CH/COS for drug delivery and outline directions for future research are addressed. The insights provided in this review will be valuable for researchers and drug development professionals interested in the application of grafted CH/COS for multifarious applications.

7.
Life (Basel) ; 13(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36836923

ABSTRACT

The number of patients with ocular disorders has increased due to contributing factors such as aging populations, environmental changes, smoking, genetic abnormalities, etc. Age-related macular degeneration (AMD) is one of the common ocular disorders which may advance to loss of vision in severe cases. The advanced form of AMD is classified into two types, dry (non-exudative) and wet (exudative) AMD. Although several therapeutic approaches are explored for the management of AMD, no approved therapy can substantially slow down the progression of dry AMD into the later stages. The focus of researchers in recent times has been engaged in developing targeted therapeutic products to halt the progression and maintain or improve vision in individuals diagnosed with AMD. The delivery of anti-VEGF agents using intravitreal therapy has found some success in managing AMD, and novel formulation approaches have been introduced in various studies to potentiate the efficacy. Some of the novel approaches, such as hydrogel, microspheres, polymeric nanoparticles, liposomes, implants, etc. have been discussed. Apart from this, subretinal, suprachoroidal, and port delivery systems have also been investigated for biologics and gene therapies. The unmet potential of approved therapeutic products has contributed to several patent applications in recent years. This review outlines the current treatment options, outcomes of recent research studies, and patent details around the novel drug delivery approach for the treatment of AMD.

8.
J Chem Phys ; 138(15): 154108, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23614413

ABSTRACT

We present an approach to calculate free energy and other thermodynamic property differences between molecules which have very little or no overlap in configuration space, but where a one-to-one mapping between the molecule geometries exists. The approach combines multistate reweighting with remapping of phase space between simulated states. We apply this method to calculate the free energy differences between non-overlapping, truncated harmonic oscillators, the free energy, enthalpy, and entropy differences between different parameterizations of rigid water, and differences in free energy of solvation between dipoles of different lengths. Previously difficult or impossible problems become either trivially easy or are improved in efficiency by two to five orders of magnitude.


Subject(s)
Thermodynamics , Water/chemistry , Algorithms , Computer Simulation , Models, Chemical , Periodicity
9.
J Chem Theory Comput ; 9(11): 4700-17, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-26583389

ABSTRACT

Multistate reweighting methods such as the multistate Bennett acceptance ratio (MBAR) can predict free energies and expectation values of thermodynamic observables at poorly sampled or unsampled thermodynamic states using simulations performed at only a few sampled states combined with single point energy reevaluations of these samples at the unsampled states. In this study, we demonstrate the power of this general reweighting formalism by exploring the effect of simulation parameters controlling Coulomb and Lennard-Jones cutoffs on free energy calculations and other observables. Using multistate reweighting, we can quickly identify, with very high sensitivity, the computationally least expensive nonbonded parameters required to obtain a specified accuracy in observables compared to the answer obtained using an expensive "gold standard" set of parameters. We specifically examine free energy estimates of three molecular transformations in a benchmark molecular set as well as the enthalpy of vaporization of TIP3P. The results demonstrates the power of this multistate reweighting approach for measuring changes in free energy differences or other estimators with respect to simulation or model parameters with very high precision and/or very low computational effort. The results also help to identify which simulation parameters affect free energy calculations and provide guidance to determine which simulation parameters are both appropriate and computationally efficient in general.

10.
J Chem Theory Comput ; 7(12): 4115-34, 2011 Dec 13.
Article in English | MEDLINE | ID: mdl-26598357

ABSTRACT

There is a significant need for improved tools to validate thermophysical quantities computed via molecular simulation. In this paper we present the initial version of a benchmark set of testing methods for calculating free energies of molecular transformation in solution. This set is based on molecular changes common to many molecular design problems, such as insertion and deletion of atomic sites and changing atomic partial charges. We use this benchmark set to compare the statistical efficiency, reliability, and quality of uncertainty estimates for a number of published free energy methods, including thermodynamic integration, free energy perturbation, the Bennett acceptance ratio (BAR) and its multistate equivalent MBAR. We identify MBAR as the consistently best performing method, though other methods are frequently comparable in reliability and accuracy in many cases. We demonstrate that assumptions of Gaussian distributed errors in free energies are usually valid for most methods studied. We demonstrate that bootstrap error estimation is a robust and useful technique for estimating statistical variance for all free energy methods studied. This benchmark set is provided in a number of different file formats with the hope of becoming a useful and general tool for method comparisons.

SELECTION OF CITATIONS
SEARCH DETAIL
...