Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 47: 108925, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36798603

ABSTRACT

Single-Molecule Tracking (SMT) is a powerful method to quantify protein dynamics in live cells. Recently, we have established a data analysis pipeline for estimating various biophysical parameters (mean squared displacement, diffusion coefficient, bound fraction, residence time, jump distances, jump angles, and track statistics) from the single-molecule time-lapse movies acquired from yeast Saccharomyces cerevisiae. We acquired the time-lapse movies using different time intervals (i.e. 15 ms, 200 ms, and 1000 ms) to extract the diffusion parameters (from 15 ms time interval movies) and residence time (from 200 ms and 1000 ms time interval movies). We tracked the single molecules from these movies using three MATLAB-based software packages (MatlabTrack, TrackIT, DiaTrack (Sojourner, and Spot-On)) to quantify various biophysical parameters. In this article, we have quantified the biophysical parameters of chromatin-bound histone H3 (Hht1), labeled using JF646 HaloTag Ligand (HTL), and shared a few raw time-lapse SMT movies for the same. Histone H3 is a chromatin-bound protein and it serves as a benchmark for the stably bound molecules for the SMT experiments. Hence, this dataset can be used by various researchers to quantify the biophysical parameters of chromatin-bound molecules (Histone H3). Any newly developed tracking software can use this dataset to validate the accuracy of its tracking algorithms.

2.
STAR Protoc ; 3(4): 101900, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36595957

ABSTRACT

Single-molecule tracking (SMT) is a powerful approach to quantify the biophysical parameters of protein dynamics in live cells. Here, we describe a protocol for SMT in live cells of the budding yeast Saccharomyces cerevisiae. We detail how to genetically engineer yeast strains for SMT, how to set up image acquisition parameters, and how different software programs can be used to quantify a variety of biophysical parameters such as diffusion coefficient, residence time, bound fraction, jump angles, and target-search parameters. For complete details on the use and execution of this protocol, please refer to Mehta et al. 1 and Ball et al..2.


Subject(s)
Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genetics , Single Molecule Imaging , Biophysics , Software
3.
J Mol Biol ; 433(22): 167250, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34537238

ABSTRACT

Single-molecule imaging has gained momentum to quantify the dynamics of biomolecules in live cells, as it provides direct real-time measurements of various cellular activities under their physiological environment. Yeast, a simple and widely used eukaryote, serves as a good model system to quantify single-molecule dynamics of various cellular processes because of its low genomic and cellular complexities, as well as its facile ability to be genetically manipulated. In the past decade, significant developments have been made regarding the intracellular labeling of biomolecules (proteins, mRNA, fatty acids), the microscopy setups to visualize single-molecules and capture their fast dynamics, and the data analysis pipelines to interpret such dynamics. In this review, we summarize the current state of knowledge for the single-molecule imaging in live yeast cells to provide a ready reference for beginners. We provide a comprehensive table to demonstrate how various labs tailored the imaging regimes and data analysis pipelines to estimate various biophysical parameters for a variety of biological processes. Lastly, we present current challenges and future directions for developing better tools and resources for single-molecule imaging in live yeast cells.


Subject(s)
Fluorescent Dyes/chemistry , Single Molecule Imaging/methods , Yeasts/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Yeasts/cytology , Yeasts/genetics
4.
Colloids Surf B Biointerfaces ; 77(1): 69-74, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20138483

ABSTRACT

In this paper we demonstrate that SWNTs and a covalent immobilization strategy enable very sensitive sensors with excellent long term stability. Organophosphorus hydrolase (OPH) functionalized single and multi-walled carbon nanotube (CNT) conjugates were exploited for direct amperometric detection of paraoxon, a model organophosphate. The catalytic hydrolysis of paraoxon produces equimoles of p-nitrophenol; oxidation was monitored amperometrically in real time under flow-injection (FIA) mode. OPH covalently immobilized on single-walled carbon nanotubes (SWNTs) demonstrated much higher activity than OPH conjugated to multi-walled carbon nanotubes (MWNTs). The dynamic concentration range for SWNT-OPH was 0.5-8.5 micromolL(-1) with a detection limit of 0.01 micromolL(-1) (S/N=3). In addition to this high sensitivity, the immobilized OPH retained a significant degree of enzymatic activity, and displayed remarkable stability with only 25% signal loss over 7 months. These results suggest that covalent immobilization of OPH on CNTs can be used for specific immobilization with advantages of long term stability, high sensitivity, and simplicity.


Subject(s)
Nanotubes, Carbon , Phosphoric Monoester Hydrolases/metabolism , Biocatalysis , Biosensing Techniques , Electrochemistry , Enzyme Stability , Hydrolysis , Limit of Detection , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Paraoxon/metabolism
5.
Langmuir ; 25(16): 9615-8, 2009 Aug 18.
Article in English | MEDLINE | ID: mdl-19719232

ABSTRACT

Protein immobilization on solid interfaces is a crucial aspect of their successful application in technologies such as biosensing, purification, separation, decontamination, etc. Although immobilization can improve the long-term and operational stability of proteins, this is often at the cost of significant losses in the catalytic activity of the tethered enzyme. Covalent attachment methods take advantage of reactive groups on the amino acid side chains. The distribution of the solvent exposed side chains on an enzyme's molecular surface often results in an ensemble of orientations when the protein is immobilized on a surface or in a matrix through these side chain linkages. Depending on the attachment mechanism and resulting orientation, access to and from the active site could be restricted. This study describes a methodology for the design and implementation of an orientation specific attachment of an enzyme to a surface plasmon resonance sensor surface. The enzyme, organophosphorus hydrolase, was structurally analyzed to identify surface resides as candidates for modification to optimize active site accessibility and, thus, sensitivity of detection. A single surface lysine on the active site face of the enzyme dimer was selected for elimination, thus allowing for the immobilization of the catalyst in the preferred orientation. Kinetic evaluation of the enzymes determined that the surface lysine-to-alanine variant retained 80% of the wild-type activity with the neurotoxin substrates, paraoxon and demeton-S. After immobilization, surfaces bearing the variant were determined to be more active even though the enzyme coverage on the sensor surface was reduced by 17%.


Subject(s)
Aryldialkylphosphatase/chemistry , Biosensing Techniques , Models, Biological , Catalytic Domain , Lysine/chemistry , Models, Molecular , Surface Properties
6.
Anal Chim Acta ; 596(1): 9-15, 2007 Jul 16.
Article in English | MEDLINE | ID: mdl-17616234

ABSTRACT

A novel detection method for organophosphate neurotoxins has been described, based on the fluorescence quenching of a Coumarin derivative. These dyes are similar in structure to some organophosphates (OPs), and they fluoresce in the blue-green region of the spectra. This methodology has been utilized for the detection of organophosphates whose hydrolysis product is p-nitrophenol by using an enzyme, organophosphorus hydrolase (OPH). Coumarin1 in the presence of p-nitrophenol results in a quenching of fluorescence, providing a direct measure of the concentration of p-nitrophenol present in the sample. The decrease in fluorescence intensity is proportional to the paraoxon concentration in the range of 7.0x10(-7)-1.7x10(-4) M. The specificity of this sensing application for p-nitrophenyl substituent OPs has also been demonstrated. OPs are a class of synthetic organic pesticides which generally have a short residual life and can cause numerous acute and chronic health effects. They have been an integral part of the agricultural industry for the past several decades due to their target specificities and selectable toxicities. The toxic nature of these compounds can be attributed to the species-specific inhibition of acetylcholinesterase (AChE), an important enzyme responsible for the regeneration of neural synaptic function. In addition to their wide agricultural and urban usage, they have also been exploited for the development of neurological chemical warfare agents. Currently available technologies for OP detection include sol-gel thin films, screen printed electrodes, acoustic patterning, gas chromatography-mass spectrometry, and various other intricate techniques that have limited field applicabilities. This optically-based approach promises much simpler and more direct detection capabilities.


Subject(s)
Biosensing Techniques , Luminescent Measurements/methods , Neurotoxins/analysis , Nitrophenols/analysis , Organophosphorus Compounds/analysis , Pesticides/analysis , Aryldialkylphosphatase/chemistry , Coumarins/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Hydrolysis , Optics and Photonics , Paraoxon/chemistry
7.
Colloids Surf B Biointerfaces ; 58(1): 28-33, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-16996252

ABSTRACT

We report a simple and rapid method for the deposition of amorphous silica onto a gold surface. The method is based on the ability of lysozyme to mediate the formation of silica nanoparticles. A monolayer of lysozyme is deposited via non-specific binding to gold. The lysozyme then mediates the self-assembled formation of a silica monolayer. The silica formation described herein occurs on a surface plasmon resonance (SPR) gold surface and is characterized by SPR spectroscopy. The silica layer significantly increases the surface area compared to the gold substrate and is directly compatible with a detection system. The maximum surface concentration of lysozyme was found to be a monolayer of 2.6 ng/mm(2) which allowed the deposition of a silica layer of a further 2 ng/mm(2). For additional surface functionalization, the silica was also demonstrated to be a suitable matrix for immobilization of biomolecules. The encapsulation of organophosphate hydrolase (OPH) was demonstrated as a model system. The silica forms at ambient conditions in a reaction that allows the encapsulation of enzymes directly during silica formation. OPH was successfully encapsulated within the silica particles and a detection limit for the substrate, paraoxon, using the surface-encapsulated enzyme was found to be 20 microM.


Subject(s)
Gold/chemistry , Muramidase/metabolism , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Surface Plasmon Resonance/methods , Aryldialkylphosphatase/metabolism , Capsules/chemical synthesis , Enzymes, Immobilized/metabolism , Microscopy, Electron, Scanning , Surface Plasmon Resonance/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...