Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
2.
Ann Bot ; 126(4): 571-585, 2020 09 14.
Article in English | MEDLINE | ID: mdl-31642506

ABSTRACT

BACKGROUND AND AIMS: Carbon allocation in plants is usually represented at a topological scale, specific to each model. This makes the results obtained with different models, and the impact of their scales of representation, difficult to compare. In this study, we developed a multi-scale carbon allocation model (MuSCA) that allows the use of different, user-defined, topological scales of a plant, and assessment of the impact of each spatial scale on simulated results and computation time. METHODS: Model multi-scale consistency and behaviour were tested on three realistic apple tree structures. Carbon allocation was computed at five scales, spanning from the metamer (the finest scale, used as a reference) up to first-order branches, and for different values of a sap friction coefficient. Fruit dry mass increments were compared across spatial scales and with field data. KEY RESULTS: The model was able to represent effects of competition for carbon assimilates on fruit growth. Intermediate friction parameter values provided results that best fitted field data. Fruit growth simulated at the metamer scale differed of ~1 % in respect to results obtained at growth unit scale and up to 60 % in respect to first order branch and fruiting unit scales. Generally, the coarser the spatial scale the more predicted fruit growth diverged from the reference. Coherence in fruit growth across scales was also differentially impacted, depending on the tree structure considered. Decreasing the topological resolution reduced computation time by up to four orders of magnitude. CONCLUSIONS: MuSCA revealed that the topological scale has a major influence on the simulation of carbon allocation. This suggests that the scale should be a factor that is carefully evaluated when using a carbon allocation model, or when comparing results produced by different models. Finally, with MuSCA, trade-off between computation time and prediction accuracy can be evaluated by changing topological scales.


Subject(s)
Malus , Carbon , Fruit , Plant Leaves
3.
Ann Bot ; 107(5): 729-45, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20852307

ABSTRACT

BACKGROUND AND AIMS: There is increasing interest in the development of plant growth models representing the complex system of interactions between the different determinants of plant development. These approaches are particularly relevant for grapevine organogenesis, which is a highly plastic process dependent on temperature, solar radiation, soil water deficit and trophic competition. METHODS: The extent to which three plant growth models were able to deal with the observed plasticity of axis organogenesis was assessed. In the first model, axis organogenesis was dependent solely on temperature, through thermal time. In the second model, axis organogenesis was modelled through functional relationships linking meristem activity and trophic competition. In the last model, the rate of phytomer appearence on each axis was modelled as a function of both the trophic status of the plant and the direct effect of soil water content on potential meristem activity. KEY RESULTS: The model including relationships between trophic competition and meristem behaviour involved a decrease in the root mean squared error (RMSE) for the simulations of organogenesis by a factor nine compared with the thermal time-based model. Compared with the model in which axis organogenesis was driven only by trophic competition, the implementation of relationships between water deficit and meristem behaviour improved organogenesis simulation results, resulting in a three times divided RMSE. The resulting model can be seen as a first attempt to build a comprehensive complete plant growth model simulating the development of the whole plant in fluctuating conditions of temperature, solar radiation and soil water content. CONCLUSIONS: We propose a new hypothesis concerning the effects of the different determinants of axis organogenesis. The rate of phytomer appearance according to thermal time was strongly affected by the plant trophic status and soil water deficit. Furthermore, the decrease in meristem activity when soil water is depleted does not result from source/sink imbalances.


Subject(s)
Models, Biological , Vitis/growth & development , Computer Simulation , Plant Leaves/growth & development , Plant Shoots/growth & development , Soil , Sunlight , Temperature , Water
4.
Ann Bot ; 105(2): 233-47, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19946042

ABSTRACT

BACKGROUND AND AIMS: Models based on the consideration of plant development as the result of source-sink relationships between organs suffer from an inherent lack of quantification of the effect of trophic competition on organ growth processes. The 'common assimilate pool theory' underlying many such models is highly debatable. METHODS: Six experiments were carried out in a greenhouse and outdoors with two grapevine cultivars and with 12 management systems, resulting in different types of plant architecture. Ten variables were used to quantify the impact of variations in assimilate supply and topological distances between sources and sinks on organogenesis, morphogenesis and biomass growth. KEY RESULTS: A hierarchy of the responses of these processes to variations in assimilate supply was identified. Organ size seemed to be independent of assimilate supply, whereas both organogenesis and biomass growth were affected by variations in assimilate supply. Lower levels of organ biomass growth in response to the depletion of assimilate supplies seemed to be the principal mechanism underlying the plasticity of plant development in different environments. Defoliation or axis ablation resulted in changes in the relationship between growth processes and assimilate supply, highlighting the influence of non-trophic determinants. The findings cast doubt on the relevance of 'the common assimilate pool theory' for modelling the development of grapevine. CONCLUSIONS: The results of this study suggest new formalisms for increasing the ability of models to take plant plasticity into account. The combination of an ecophysiological model for morphogenesis taking environmental signals into account and a biomass driven model for organogenesis and biomass allocation taking the topological distances between the sources and the sinks into account appears to be a promising approach. Moreover, in order to simulate the impact of agronomic practices, it will be necessary to take into account the non-trophic determinants of plant development such as hormonal signaletics.


Subject(s)
Vitis/growth & development , Biomass , Computer Simulation , Morphogenesis/physiology , Vitis/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...