Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Viruses ; 15(7)2023 06 26.
Article in English | MEDLINE | ID: mdl-37515124

ABSTRACT

BACKGROUND: Lassa virus (LASV) can cause severe acute systemic infection in humans. No approved antiviral drugs or vaccines are currently available. Antibody-based therapeutics are considered a promising treatment strategy in the management of LASV disease. METHODS: We used chimeric Ifnar-/- C57BL/6 (Ifnar-/- Bl6) mice, a lethal LASV mouse model, to evaluate the protective efficacy of polyclonal antibodies purified from sera of rabbits hyperimmunized with virus-like particles displaying native-like LASV glycoprotein GP spikes. RESULTS: Polyclonal anti-LASV GP antibodies provided 100% protection against lethal LASV infection in a pre- and post-exposure treatment setting and prevented LASV disease. Treatment also significantly lowered viremia level and virus load in organs. When treatment was initiated at the onset of symptoms, the hyperimmune antibodies provided partial protection and increased the survival rate by 80%. CONCLUSIONS: Our findings support the consideration of animal-derived hyperimmune antibodies targeting GP as an effective treatment option for highly pathogenic LASV.


Subject(s)
Lassa Fever , Humans , Animals , Mice , Rabbits , Mice, Inbred C57BL , Lassa virus , Antiviral Agents/pharmacology , Antibodies/pharmacology
2.
J Virol ; 96(18): e0057422, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36073921

ABSTRACT

Ebola virus disease (EVD) is a complex infectious disease characterized by high inflammation, multiorgan failure, the dysregulation of innate and adaptive immune responses, and coagulation abnormalities. Evidence accumulated over the last 2 decades indicates that, during fatal EVD, the infection of antigen-presenting cells (APC) and the dysregulation of T cell immunity preclude a successful transition between innate and adaptive immunity, which constitutes a key disease checkpoint. In order to better understand the contribution of the APC-T cell crosstalk to EVD pathophysiology, we have developed avatar mice transplanted with human, donor-specific APCs and T cells. Here, we show that the transplantation of T cells and APCs from Ebola virus (EBOV)-naive individuals into avatar mice results in severe disease and death and that this phenotype is dependent on T cell receptor (TCR)-major histocompatibility complex (MCH) recognition. Conversely, avatar mice were rescued from death induced by EBOV infection after the transplantation of both T cells and plasma from EVD survivors. These results strongly suggest that protection from EBOV reinfection requires both cellular and humoral immune memory responses. IMPORTANCE The crosstalk between dendritic cells and T cells marks the transition between innate and adaptive immune responses, and it constitutes an important checkpoint in EVD. In this study, we present a mouse avatar model in which T cell and dendritic cell interactions from a specific donor can be studied during EVD. Our findings indicate that T cell receptor-major histocompatibility complex-mediated T cell-dendritic cell interactions are associated with disease severity, which mimics the main features of severe EVD in these mice. Resistance to an EBOV challenge in the model was achieved via the transplantation of both survivor T cells and plasma.


Subject(s)
Cell Communication , Dendritic Cells , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Cell Communication/immunology , Dendritic Cells/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/physiopathology , Humans , Mice , Survivors , T-Lymphocytes/immunology , T-Lymphocytes/virology
3.
Viruses ; 14(9)2022 09 08.
Article in English | MEDLINE | ID: mdl-36146793

ABSTRACT

Mastomys natalensis is the natural host of various arenaviruses, including the human-pathogenic Lassa virus. Homologous arenaviruses, defined here as those having M. natalensis as a natural host, can establish long-lasting infection in M. natalensis, while these animals rapidly clear arenaviruses having another rodent species as a natural host (heterologous viruses). Little is known about the mechanisms behind the underlying arenavirus-host barriers. The innate immune system, particularly the type I interferon (IFN) response, might play a role. In this study, we developed and validated RT-PCR assays to analyse the expression of M. natalensis interferon-stimulated genes (ISGs). We then used these assays to study if homologous and heterologous viruses induce different IFN responses in M. natalensis cells. Infection experiments were performed with the homologous Lassa and Morogoro viruses and the related but heterologous Mobala virus. Compared to the direct induction with IFN or Poly(I:C), arenaviruses generally induced a weak IFN response. However, the ISG-expression profiles of homologous and heterologous viruses were similar. Our data indicate that, at least in M. natalensis cells, the IFN system is not a major factor in the virus-host barrier for arenaviruses. Our system provides a valuable tool for future in vivo investigation of arenavirus host restrictions at the level of the innate immune response.


Subject(s)
Arenaviridae Infections , Arenavirus , Interferon Type I , Animals , Arenavirus/physiology , Humans , Immunity, Innate , Murinae , Tanzania
4.
Lancet Microbe ; 3(1): e32-e40, 2022 01.
Article in English | MEDLINE | ID: mdl-35544114

ABSTRACT

BACKGROUND: There is anecdotal evidence for Lassa virus persistence in body fluids. We aimed to investigate various body fluids after recovery from acute Lassa fever, describe the dynamics of Lassa virus RNA load in seminal fluid, and assess the infectivity of seminal fluid. METHODS: In this prospective, longitudinal, cohort study we collected plasma, urine, saliva, lacrimal fluid, vaginal fluid, and seminal fluid from Lassa fever survivors from Irrua Specialist Teaching Hospital in Edo State, Nigeria. Inclusion criteria for participants were RT-PCR-confirmed Lassa fever diagnosis and age 18 years or older. Samples were taken at discharge from hospital (month 0) and at months 0·5, 1, 3, 6, 9, 12, 18, and 24 after discharge. The primary objective of this study was to quantitatively describe virus persistence and clearance and assess the infectivity of seminal fluid. Lassa virus RNA was detected using real-time RT-PCR. Infectivity was tested in cell culture and immunosuppressed mice. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. FINDINGS: Between Jan 31, 2018, and Dec 11, 2019, 165 participants were enrolled in the study, of whom 159 were eligible for analysis (49 women and 110 men). Low amounts of Lassa virus RNA were detected at month 0 in plasma (49 [45%] of 110 participants), urine (37 [34%]), saliva (five [5%]), lacrimal fluid (ten [9%]), and vaginal fluid (seven [21%] of 33 female participants). Virus RNA was cleared from these body fluids by month 3. However, 35 (80%) of 44 male participants had viral RNA in seminal fluid at month 0 with a median cycle threshold of 26·5. Lassa virus RNA remained detectable up to month 12 in seminal fluid. Biostatistical modelling estimated a clearance rate of 1·19 log10 viral RNA copies per month and predicted that 50% of male survivors remain Lassa virus RNA-positive in seminal fluid for 83 days after hospital discharge and 10% remain positive in seminal fluid for 193 days after discharge. Viral RNA persistence in seminal fluid for 3 months or more was associated with higher viraemia (p=0·006), more severe disease (p=0·0075), and longer hospitalisation during the acute phase of Lassa fever (p=0·0014). Infectious virus was isolated from 48 (52%) of 93 virus RNA-positive seminal fluid samples collected between month 0 and 12. INTERPRETATION: Lassa virus RNA is shed in various body fluids after recovery from acute disease. The persistence of infectious virus in seminal fluid implies a risk of sexual transmission of Lassa fever. FUNDING: German Federal Ministry of Health, German Research Foundation, Leibniz Association.


Subject(s)
Lassa Fever , Viruses, Unclassified , Animals , Cohort Studies , DNA Viruses/genetics , Female , Humans , Lassa Fever/diagnosis , Longitudinal Studies , Male , Mice , Nigeria/epidemiology , Prospective Studies , RNA, Viral/genetics , Viruses, Unclassified/genetics
5.
Viruses ; 13(6)2021 05 24.
Article in English | MEDLINE | ID: mdl-34073735

ABSTRACT

Several of the human-pathogenic arenaviruses cause hemorrhagic fever and have to be handled under biosafety level 4 conditions, including Lassa virus. Rapid and safe inactivation of specimens containing these viruses is fundamental to enable downstream processing for diagnostics or research under lower biosafety conditions. We established a protocol to test the efficacy of inactivation methods using the low-pathogenic Morogoro arenavirus as surrogate for the related highly pathogenic viruses. As the validation of chemical inactivation methods in cell culture systems is difficult due to cell toxicity of commonly used chemicals, we employed filter devices to remove the chemical and concentrate the virus after inactivation and before inoculation into cell culture. Viral replication in the cells was monitored over 4 weeks by using indirect immunofluorescence and immunofocus assay. The performance of the protocol was verified using published inactivation methods including chemicals and heat. Ten additional methods to inactivate virus in infected cells or cell culture supernatant were validated and shown to reduce virus titers to undetectable levels. In summary, we provide a robust protocol for the validation of chemical and physical inactivation of arenaviruses in cell culture, which can be readily adapted to different inactivation methods and specimen matrices.


Subject(s)
Arenavirus/physiology , Disinfection/methods , Virus Inactivation , Animals , Cell Culture Techniques , Cell Line , Cells, Cultured , Chlorocebus aethiops , Disinfection/standards , Humans , Reproducibility of Results , Specimen Handling/methods , Vero Cells
6.
Viruses ; 13(5)2021 05 07.
Article in English | MEDLINE | ID: mdl-34067011

ABSTRACT

Natural hosts of most arenaviruses are rodents. The human-pathogenic Lassa virus and several non-pathogenic arenaviruses such as Morogoro virus (MORV) share the same host species, namely Mastomys natalensis (M. natalensis). In this study, we investigated the history of infection and virus transmission within the natural host population. To this end, we infected M. natalensis at different ages with MORV and measured the health status of the animals, virus load in blood and organs, the development of virus-specific antibodies, and the ability of the infected individuals to transmit the virus. To explore the impact of the lack of evolutionary virus-host adaptation, experiments were also conducted with Mobala virus (MOBV), which does not share M. natalensis as a natural host. Animals infected with MORV up to two weeks after birth developed persistent infection, seroconverted and were able to transmit the virus horizontally. Animals older than two weeks at the time of infection rapidly cleared the virus. In contrast, MOBV-infected neonates neither developed persistent infection nor were able to transmit the virus. In conclusion, we demonstrate that MORV is able to develop persistent infection in its natural host, but only after inoculation shortly after birth. A related arenavirus that is not evolutionarily adapted to M. natalensis is not able to establish persistent infection. Persistently infected animals appear to be important to maintain virus transmission within the host population.


Subject(s)
Arenaviridae Infections/veterinary , Arenavirus/physiology , Disease Reservoirs/virology , Murinae/virology , Animals , Animals, Newborn , Arenavirus/classification , Host Specificity , Rodent Diseases/virology , Virus Replication
7.
Lancet Infect Dis ; 21(6): 876-886, 2021 06.
Article in English | MEDLINE | ID: mdl-33484646

ABSTRACT

BACKGROUND: Lassa fever is endemic in several west African countries. Case-fatality rates ranging from 21% to 69% have been reported. The pathophysiology of the disease in humans and determinants of mortality remain poorly understood. We aimed to determine host protein biomarkers capable of determining disease outcome. METHODS: In this observational study, we analysed left-over blood samples from patients who tested positive for Lassa fever at Irrua Specialist Teaching Hospital, Nigeria, between January, 2014, and April, 2017. We measured viral load, concentrations of clinical chemistry parameters, and levels of 62 circulating proteins involved in inflammation, immune response, and haemostasis. Patients with a known outcome (survival or death) and at least 200 µL of good-quality diagnostic sample were included in logistic regression modelling to assess the correlation of parameters with Lassa fever outcome. Individuals who gave consent could further be enrolled into a longitudinal analysis to assess the association of parameters with Lassa fever outcome over time. Participants were divided into two datasets for the statistical analysis: a primary dataset (samples taken between Jan 1, 2014, and April 1, 2016), and a secondary dataset (samples taken between April 1, 2016, and April 1, 2017). Biomarkers were ranked by area under the receiver operating characteristic curve (AUC) from highest (most predictive) to lowest (least predictive). FINDINGS: Of 554 patients who tested positive for Lassa fever during the study period, 201 (131 in the primary dataset and 70 in the secondary dataset) were included in the biomarker analysis, of whom 74 (49 in the primary dataset and 25 in the secondary dataset) had died and 127 (82 in the primary dataset and 45 in the secondary dataset) had survived. Cycle threshold values (indicating viral load) and levels of 18 host proteins at the time of admission to hospital were significantly correlated with fatal outcome. The best predictors of outcome in both datasets were plasminogen activator inhibitor-1 (PAI-1; AUC 0·878 in the primary dataset and 0·876 in the secondary dataset), soluble thrombomodulin (TM; 0·839 in the primary dataset and 0·875 in the secondary dataset), and soluble tumour necrosis factor receptor superfamily member 1A (TNF-R1; 0·807 in the primary dataset and 0·851 in the secondary dataset), all of which had higher prediction accuracy than viral load (0·774 in the primary dataset and 0·837 in the secondary dataset). Longitudinal analysis (150 patients, of whom 36 died) showed that of the biomarkers that were predictive at admission, PAI-1 levels consistently decreased to normal levels in survivors but not in those who died. INTERPRETATION: The identification of PAI-1 and soluble TM as markers of fatal Lassa fever at admission, and of PAI-1 as a marker of fatal Lassa fever over time, suggests that dysregulated coagulation and fibrinolysis and endothelial damage have roles in the pathophysiology of Lassa fever, providing a mechanistic explanation for the association of Lassa fever with oedema and bleeding. These novel markers might aid in clinical risk stratification and disease monitoring. FUNDING: German Research Foundation, Leibniz Association, and US National Institutes of Health.


Subject(s)
Biomarkers/blood , Lassa Fever/diagnosis , Lassa Fever/mortality , Lassa Fever/physiopathology , Lassa virus/isolation & purification , Adult , Aged , Aged, 80 and over , Humans , Lassa Fever/epidemiology , Logistic Models , Male , Middle Aged , Mortality , Nigeria/epidemiology , Survival Rate , Viral Load
8.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: mdl-32817220

ABSTRACT

Lassa fever (LF) is a zoonotic viral hemorrhagic fever caused by Lassa virus (LASV), which is endemic to West African countries. Previous studies have suggested an important role for T-cell-mediated immunopathology in LF pathogenesis, but the mechanisms by which T cells influence disease severity and outcome are not well understood. Here, we present a multiparametric analysis of clinical immunology data collected during the 2017-2018 Lassa fever outbreak in Nigeria. During the acute phase of LF, we observed robust activation of the polyclonal T-cell repertoire, which included LASV-specific and antigenically unrelated T cells. However, severe and fatal LF cases were characterized by poor LASV-specific effector T-cell responses. Severe LF was also characterized by the presence of circulating T cells with homing capacity to inflamed tissues, including the gut mucosa. These findings in LF patients were recapitulated in a mouse model of LASV infection, in which mucosal exposure resulted in remarkably high lethality compared to skin exposure. Taken together, our findings indicate that poor LASV-specific T-cell responses and activation of nonspecific T cells with homing capacity to inflamed tissues are associated with severe LF.IMPORTANCE Lassa fever may cause severe disease in humans, in particular in areas of endemicity like Sierra Leone and Nigeria. Despite its public health importance, the pathophysiology of Lassa fever in humans is poorly understood. Here, we present clinical immunology data obtained in the field during the 2018 Lassa fever outbreak in Nigeria indicating that severe Lassa fever is associated with activation of T cells antigenically unrelated to Lassa virus and poor Lassa virus-specific effector T-cell responses. Mechanistically, we show that these bystander T cells express defined tissue homing signatures that suggest their recruitment to inflamed tissues and a putative role of these T cells in immunopathology. These findings open a window of opportunity to consider T-cell targeting as a potential postexposure therapeutic strategy against severe Lassa fever, a hypothesis that could be tested in relevant animal models, such as nonhuman primates.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Outbreaks , Intestinal Mucosa/immunology , Lassa Fever/immunology , Lassa virus/pathogenicity , Lymphocyte Activation , Adolescent , Adult , Aged , Animals , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , Child , Child, Preschool , Female , Gene Expression Regulation , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Humans , Infant , Infant, Newborn , Integrin beta1/genetics , Integrin beta1/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Lassa Fever/genetics , Lassa Fever/mortality , Lassa Fever/virology , Lassa virus/growth & development , Lassa virus/immunology , Lysosomal-Associated Membrane Protein 1/genetics , Lysosomal-Associated Membrane Protein 1/immunology , Male , Mice , Middle Aged , Nigeria/epidemiology , Retrospective Studies , Severity of Illness Index , Skin/immunology , Skin/pathology , Skin/virology , Survival Analysis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
9.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31413134

ABSTRACT

Lassa virus is genetically diverse with several lineages circulating in West Africa. This study aimed at describing the sequence variability of Lassa virus across Nigeria and inferring its spatiotemporal evolution. We sequenced and isolated 77 Lassa virus strains from 16 Nigerian states. The final data set, including previous works, comprised metadata and sequences of 219 unique strains sampled between 1969 and 2018 in 22 states. Most of this data originated from Lassa fever patients diagnosed at Irrua Specialist Teaching Hospital, Edo State, Nigeria. The majority of sequences clustered with the main Nigerian lineages II and III, while a few sequences formed a new cluster related to Lassa virus strains from Hylomyscus pamfi Within lineages II and III, seven and five sublineages, respectively, were distinguishable. Phylogeographic analysis suggests an origin of lineage II in the southeastern part of the country around Ebonyi State and a main vector of dispersal toward the west across the Niger River, through Anambra, Kogi, Delta, and Edo into Ondo State. The frontline of virus dispersal appears to be in Ondo. Minor vectors are directed northeast toward Taraba and Adamawa and south toward Imo and Rivers. Lineage III might have spread from northern Plateau State into Kaduna, Nasarawa, Federal Capital Territory, and Bauchi. One sublineage moved south and crossed the Benue River into Benue State. This study provides a geographic mapping of lineages and phylogenetic clusters in Nigeria at a higher resolution. In addition, we estimated the direction and time frame of virus dispersal in the country.IMPORTANCE Lassa virus is the causative agent of Lassa fever, a viral hemorrhagic fever with a case fatality rate of approximately 30% in Africa. Previous studies disclosed a geographical pattern in the distribution of Lassa virus strains and a westward movement of the virus across West Africa during evolution. Our study provides a deeper understanding of the geography of genetic lineages and sublineages of the virus in Nigeria. In addition, we modeled how the virus spread in the country. This knowledge allows us to predict into which geographical areas the virus might spread in the future and prioritize areas for Lassa fever surveillance. Our study not only aimed to generate Lassa virus sequences from across Nigeria but also to isolate and conserve the respective viruses for future research. Both isolates and sequences are important for the development and evaluation of medical countermeasures to treat and prevent Lassa fever, such as diagnostics, therapeutics, and vaccines.


Subject(s)
Lassa Fever/virology , Lassa virus/classification , Animals , Evolution, Molecular , Genetic Variation , Humans , Lassa Fever/epidemiology , Lassa Fever/transmission , Lassa virus/genetics , Murinae/virology , Nigeria/epidemiology , Phylogeny , Phylogeography
10.
J Infect Dis ; 220(2): 195-202, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30788508

ABSTRACT

BACKGROUND: In 2015, the laboratory at the Ebola treatment center in Coyah, Guinea, confirmed Ebola virus disease (EVD) in 286 patients. The cycle threshold (Ct) of an Ebola virus-specific reverse transcription-polymerase chain reaction assay and 13 blood chemistry parameters were measured on admission and during hospitalization. Favipiravir treatment was offered to patients with EVD on a compassionate-use basis. METHODS: To reduce biases in the raw field data, we carefully selected 163 of 286 patients with EVD for a retrospective study to assess associations between potential risk factors, alterations in blood chemistry findings, favipiravir treatment, and outcome. RESULTS: The case-fatality rate in favipiravir-treated patients was lower than in untreated patients (42.5% [31 of 73] vs 57.8% [52 of 90]; P = .053 by univariate analysis). In multivariate regression analysis, a higher Ct and a younger age were associated with survival (P < .001), while favipiravir treatment showed no statistically significant effect (P = .11). However, Kaplan-Meier analysis indicated a longer survival time in the favipiravir-treated group (P = .015). The study also showed characteristic changes in blood chemistry findings in patients who died, compared with survivors. CONCLUSIONS: Consistent with the JIKI trial, this retrospective study revealed a trend toward improved survival in favipiravir- treated patients; however, the effect of treatment was not statistically significant, except for its influence on survival time.


Subject(s)
Amides/therapeutic use , Antiviral Agents/therapeutic use , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Pyrazines/therapeutic use , Adolescent , Adult , Child , Child, Preschool , Compassionate Use Trials/methods , Female , Guinea , Hemorrhagic Fever, Ebola/virology , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Retrospective Studies , Viral Load/drug effects , Young Adult
11.
Sci Rep ; 7: 43776, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256637

ABSTRACT

Ebola virus (EBOV) causes severe systemic disease in humans and non-human primates characterized by high levels of viremia and virus titers in peripheral organs. The natural portals of virus entry are the mucosal surfaces and the skin where macrophages and dendritic cells (DCs) are primary EBOV targets. Due to the migratory properties of DCs, EBOV infection of these cells has been proposed as a necessary step for virus dissemination via draining lymph nodes and blood. Here we utilize chimeric mice with competent hematopoietic-driven immunity, to show that EBOV primarily infects CD11b+ DCs in non-lymphoid and lymphoid tissues, but spares the main cross-presenting CD103+ DC subset. Furthermore, depletion of CD8 and CD4 T cells resulted in loss of early control of virus replication, viremia and fatal Ebola virus disease (EVD). Thus, our findings point out at T cell function as a key determinant of EVD progress and outcome.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , T-Lymphocytes/immunology , Virus Replication/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , CD11b Antigen/immunology , CD11b Antigen/metabolism , Cross-Priming/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/virology , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/virology , Host-Pathogen Interactions/immunology , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Kinetics , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Lymphoid Tissue/virology , Mice, Inbred C57BL , Mice, Knockout , Viremia/immunology , Viremia/virology
12.
Lancet Glob Health ; 5(1): e80-e88, 2017 01.
Article in English | MEDLINE | ID: mdl-27955791

ABSTRACT

BACKGROUND: By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fluid, including clearance parameters. METHODS: In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fluid at follow-up every 3-6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodeficient mice to test for infectivity. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. FINDINGS: We enrolled 26 participants and tested 130 seminal fluid specimens; median follow up was 197 days (IQR 187-209 days) after enrolment, which corresponded to 255 days (228-287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73-181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fluid of -0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fluid at 115 days (90% prediction interval 72-160) and 294 days (212-399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in affected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. INTERPRETATION: Time to clearance of Ebola virus RNA from seminal fluid varies greatly between individuals and could be more than 13 months. Our predictions will assist in decision-making about surveillance and preventive measures in EVD outbreaks. FUNDING: This study was funded by European Union's Horizon 2020 research and innovation programme, Directorate-General for International Cooperation and Development of the European Commission, Institut national de la santé et de la recherche médicale (INSERM), German Research Foundation (DFG), and Innovative Medicines Initiative 2 Joint Undertaking.


Subject(s)
Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/transmission , RNA , Semen , Survivors , Adult , Ebolavirus/genetics , Guinea , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Humans , Longitudinal Studies , Male , Middle Aged , Models, Statistical , Time Factors
13.
J Infect Dis ; 214(suppl 3): S250-S257, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27638946

ABSTRACT

BACKGROUND: A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. METHODS: The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription-polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. RESULTS: The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus-malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10-19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5-14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. CONCLUSIONS: Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD.


Subject(s)
Ebolavirus/isolation & purification , Epidemics , Filoviridae Infections/diagnosis , Hemorrhagic Fever, Ebola/diagnosis , Malaria/complications , Mobile Health Units , Adolescent , Adult , Aged , Child , Child, Preschool , Clinical Laboratory Services , Ebolavirus/genetics , Female , Filoviridae , Filoviridae Infections/complications , Filoviridae Infections/virology , Guinea , Hemorrhagic Fever, Ebola/complications , Hemorrhagic Fever, Ebola/virology , Humans , Infant , Malaria/parasitology , Male , Middle Aged , RNA, Viral/blood , Viral Load , Young Adult
14.
J Infect Dis ; 214(suppl 3): S243-S249, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27549586

ABSTRACT

BACKGROUND: Diagnosis of Ebola virus (EBOV) disease (EVD) requires laboratory testing. METHODS: The RealStar Filovirus Screen reverse transcription-polymerase chain reaction (RT-PCR) kit and the derived RealStar Zaire Ebolavirus RT-PCR kit were validated using in vitro transcripts, supernatant of infected cell cultures, and clinical specimens from patients with EVD. RESULTS: The Filovirus Screen kit detected EBOV, Sudan virus, Taï Forest virus, Bundibugyo virus, Reston virus, and Marburg virus and differentiated between the genera Ebolavirus and Marburgvirus The amount of filovirus RNA that could be detected with a probability of 95% ranged from 11 to 67 RNA copies/reaction on a LightCycler 480 II. The Zaire Ebolavirus kit is based on the Filovirus Screen kit but was optimized for detection of EBOV. It has an improved signal-to-noise ratio at low EBOV RNA concentrations and is somewhat more sensitive than the Filovirus kit. Both kits show significantly lower analytical sensitivity on a SmartCycler II. Clinical evaluation revealed that the SmartCycler II, compared with other real-time PCR platforms, decreases the clinical sensitivity of the Filovirus Screen kit to diagnose EVD at an early stage. CONCLUSIONS: The Filovirus Screen kit detects all human-pathogenic filoviruses with good analytical sensitivity if performed on an appropriate real-time PCR platform. High analytical sensitivity is important for early diagnosis of EVD.


Subject(s)
Ebolavirus/isolation & purification , Filoviridae Infections/diagnosis , Filoviridae/isolation & purification , Hemorrhagic Fever, Ebola/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Ebolavirus/genetics , Filoviridae/genetics , Filoviridae Infections/virology , Hemorrhagic Fever, Ebola/virology , Humans , Pathology, Molecular , RNA, Viral/analysis , RNA, Viral/genetics , Reagent Kits, Diagnostic , Sensitivity and Specificity
15.
PLoS Pathog ; 12(5): e1005656, 2016 05.
Article in English | MEDLINE | ID: mdl-27191716

ABSTRACT

Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology.


Subject(s)
Disease Models, Animal , Lassa Fever/immunology , Lassa Fever/pathology , Animals , Flow Cytometry , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Radiation Chimera
16.
Nature ; 533(7601): 100-4, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27147028

ABSTRACT

Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/physiopathology , T-Lymphocytes/immunology , CTLA-4 Antigen/metabolism , Female , Flow Cytometry , Guinea/epidemiology , Hemorrhagic Fever, Ebola/mortality , Humans , Inflammation Mediators/immunology , Longitudinal Studies , Lymphocyte Activation , Male , Patient Discharge , Programmed Cell Death 1 Receptor/metabolism , Survivors , T-Lymphocytes/metabolism , Viral Load
17.
J Infect Dis ; 213(6): 934-8, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26531247

ABSTRACT

We studied the therapeutic potential of favipiravir (T-705) for Lassa fever, both alone and in combination with ribavirin. Favipiravir suppressed Lassa virus replication in cell culture by 5 log10 units. In a novel lethal mouse model, it lowered the viremia level and the virus load in organs and normalized levels of cell-damage markers. Treatment with 300 mg/kg per day, commenced 4 days after infection, when the viremia level had reached 4 log10 virus particles/mL, rescued 100% of Lassa virus-infected mice. We found a synergistic interaction between favipiravir and ribavirin in vitro and an increased survival rate and extended survival time when combining suboptimal doses in vivo.


Subject(s)
Amides/therapeutic use , Antiviral Agents/therapeutic use , Lassa Fever/drug therapy , Pyrazines/therapeutic use , Ribavirin/therapeutic use , Amides/administration & dosage , Animals , Antiviral Agents/administration & dosage , Chlorocebus aethiops , Drug Therapy, Combination , Mice , Pyrazines/administration & dosage , Ribavirin/administration & dosage , Vero Cells , Viral Load , Virus Replication
18.
J Virol ; 89(8): 4700-4, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25673711

ABSTRACT

The development of treatments for Ebola virus disease (EVD) has been hampered by the lack of small-animal models that mimick human disease. Here we show that mice with transplanted human hematopoetic stem cells reproduce features typical of EVD. Infection with Ebola virus was associated with viremia, cell damage, liver steatosis, signs of hemorrhage, and high lethality. Our study provides a small-animal model with human components for the development of EVD therapies.


Subject(s)
Disease Models, Animal , Ebolavirus/immunology , Hematopoietic Stem Cell Transplantation/methods , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/transmission , Heterografts/immunology , Mice, Inbred NOD , Animals , Fatty Liver/pathology , Hemorrhage/pathology , Hemorrhagic Fever, Ebola/pathology , Humans , Kaplan-Meier Estimate , Mice , Microscopy, Fluorescence , Viremia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...