Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biophys Rev ; 13(6): 1199-1217, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35047093

ABSTRACT

Understanding the mechanism of the brain via optical microscopy is one of the challenges in neuroimaging, considering the complex structures. Advanced neuroimaging techniques provide a more comprehensive insight into patho-mechanisms of brain disorders, which is useful in the early diagnosis of the pathological and physiological changes associated with various neurodegenerative diseases. Recent advances in optical microscopy techniques have evolved powerful tools to overcome scattering of light and provide improved in vivo neuroimaging with sub-cellular resolution, endogenous contrast specificity, pinhole less optical sectioning capability, high penetration depth, and so on. The following article reviews the developments in various optical imaging techniques including two-photon and three-photon fluorescence, second-harmonic generation, third-harmonic generation, coherent anti-Stokes Raman scattering, and stimulated Raman scattering in neuroimaging. We have outlined the potentials and drawbacks of these techniques and their possible applications in the investigation of neurodegenerative diseases.

2.
Microsc Res Tech ; 83(12): 1623-1638, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32770582

ABSTRACT

Severe Acute Respiratory Syndrome Coronaviruses (SARS-CoVs), causative of major outbreaks in the past two decades, has claimed many lives all over the world. The virus effectively spreads through saliva aerosols or nasal discharge from an infected person. Currently, no specific vaccines or treatments exist for coronavirus; however, several attempts are being made to develop possible treatments. Hence, it is important to study the viral structure and life cycle to understand its functionality, activity, and infectious nature. Further, such studies can aid in the development of vaccinations against this virus. Microscopy plays an important role in examining the structure and topology of the virus as well as pathogenesis in infected host cells. This review deals with different microscopy techniques including electron microscopy, atomic force microscopy, fluorescence microscopy as well as computational methods to elucidate various prospects of this life-threatening virus.


Subject(s)
Computational Biology/methods , Coronavirus Infections/virology , Microscopy/methods , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/ultrastructure , Animals , Chlorocebus aethiops , Host-Pathogen Interactions , Humans , Microscopy/classification , Microscopy, Atomic Force , Microscopy, Electron , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Severe acute respiratory syndrome-related coronavirus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
3.
Microsc Res Tech ; 83(5): 490-498, 2020 May.
Article in English | MEDLINE | ID: mdl-32319189

ABSTRACT

Starch granules from rice and corn were isolated, and their molecular mechanism on interaction with α-amylase was characterized through biochemical test, microscopic imaging, and spectroscopic measurements. The micro-scale structure of starch granules were observed under an optical microscope and their average size was in the range 1-100 µm. The surface topological structures of starch with micro-holes due to the effect of α- amylase were also visualized under scanning electron microscope. The crystallinity was confirmed by X-ray diffraction patterns as well as second-harmonic generation microscopy. The change in chemical bonds before and after hydrolysis of the starch granules by α- amylase was determined by Fourier transform infrared spectroscopy. Combination of microscopy and spectroscopy techniques relates structural and chemical features that explain starch enzymatic hydrolysis which will provide a valid basis for future studies in food science and insights into the energy transformation dynamics.


Subject(s)
Oryza/ultrastructure , Starch/metabolism , Starch/ultrastructure , Zea mays/ultrastructure , alpha-Amylases/metabolism , Hydrolysis , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
4.
Biophys Rev ; 12(1): 105-122, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31950343

ABSTRACT

Starch is a major source of our daily diet and it is important to understand the molecular structure that plays a significant role in its wide number of applications. In this review article, microscopic structures of starch granules from potato, corn, rice canna, tania, wheat, sweet potato, and cassava are revealed using advanced microscopic techniques. Optical microscopy depicts the size and shape, polarization microscopy shows the anisotropy properties of starch granules, scanning electron microscopy (SEM) displays surface topography, and confocal microscopy is used to observe the three-dimensional internal structure of starch granules. The crystallinity of starch granules is revealed by second harmonic generation (SHG) microscopy and atomic force microscopy (AFM) provides mechanical properties including strength, texture, and elasticity. These properties play an important role in understanding the stability of starch granules under various processing conditions like heating, enzyme degradation, and hydration and determining its applications in various industries such as food packaging and textile industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...