Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762516

ABSTRACT

Studies in human colonic cell lines and murine intestine suggest the presence of a Ca2+-activated anion channel, presumably TMEM16a. Is there a potential for fluid secretion in patients with severe cystic fibrosis transmembrane conductance regulator (CFTR) mutations by activating this alternative pathway? Two-dimensional nondifferentiated colonoid-myofibroblast cocultures resembling transit amplifying/progenitor (TA/PE) cells, as well as differentiated monolayer (DM) cultures resembling near-surface cells, were established from both healthy controls (HLs) and patients with severe functional defects in the CFTR gene (PwCF). F508del mutant and CFTR knockout (null) mice ileal and colonic mucosa was also studied. HL TA/PE monolayers displayed a robust short-circuit current response (ΔIeq) to UTP (100 µM), forskolin (Fsk, 10 µM) and carbachol (CCH, 100 µM), while ΔIeq was much smaller in differentiated monolayers. The selective TMEM16a inhibitor Ani9 (up to 30 µM) did not alter the response to luminal UTP, significantly decreased Fsk-induced ΔIeq, and significantly increased CCH-induced ΔIeq in HL TA/PE colonoid monolayers. The PwCF TA/PE and the PwCF differentiated monolayers displayed negligible agonist-induced ΔIeq, without a significant effect of Ani9. When TMEM16a was localized in intracellular structures, a staining in the apical membrane was not detected. TMEM16a is highly expressed in human colonoid monolayers resembling transit amplifying cells of the colonic cryptal neck zone, from both HL and PwCF. While it may play a role in modulating agonist-induced CFTR-mediated anion currents, it is not localized in the apical membrane, and it has no function as an apical anion channel in cystic fibrosis (CF) and healthy human colonic epithelium.


Subject(s)
Cystic Fibrosis , Animals , Humans , Mice , Anions , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelium , Uridine Triphosphate
2.
Front Pharmacol ; 14: 1171544, 2023.
Article in English | MEDLINE | ID: mdl-37469865

ABSTRACT

Introduction: Triple-combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy with elexacaftor/tezacaftor/ivacaftor (ETI) was introduced in August 2020 in Germany for people with CF (pwCF) ≥12 years (yrs.) of age and in June 2021 for pwCF ≥6 yrs of age. In this single-center study, we analyzed longitudinal data on the percent-predicted forced expiratory volume (ppFEV1) and body-mass-index (BMI) for 12 months (mo.) after initiation of ETI by linear mixed models and regression analyses to identify age- and severity-dependent determinants of response to ETI. Methods: We obtained data on 42 children ≥6-11 yrs, 41 adolescents ≥12-17 yrs, and 143 adults by spirometry and anthropometry prior to ETI, and 3 and 12 mo. after ETI initiation. Data were stratified by the age group and further sub-divided into age-specific ppFEV1 impairment. To achieve this, the age strata were divided into three groups, each according to their baseline ppFEV1: lowest 25%, middle 50%, and top 25% of ppFEV1. Results: Adolescents and children with more severe lung disease prior to ETI (within the lowest 25% of age-specific ppFEV1) showed higher improvements in lung function than adults in this severity group (+18.5 vs. +7.5; p = 0.002 after 3 mo. and +13.8 vs. +7.2; p = 0.012 after 12 mo. of ETI therapy for ≥12-17 years and +19.8 vs. +7.5; p = 0.007 after 3 mo. for children ≥6-11 yrs). In all age groups, participants with more severe lung disease showed higher BMI gains than those with medium or good lung function (within the middle 50% or top 25% of age-specific ppFEV1). Regression analyses identified age as a predictive factor for FEV1 increase at 3 mo. after ETI initiation, and age and ppFEV1 at ETI initiation as predictive factors for FEV1 increase 12 mo. after ETI initiation. Discussion: We report initial data, which suggest that clinical response toward ETI depends on age and lung disease severity prior to ETI initiation, which argue for early initiation of ETI.

3.
J Cyst Fibros ; 21(3): 442-447, 2022 05.
Article in English | MEDLINE | ID: mdl-34756683

ABSTRACT

BACKGROUND: The cystic fibrosis (CF) sweat gland is defective in ß-adrenergically-stimulated sweat secretion in the coil and chloride reabsorption in the duct. Whereas chloride reabsorption is regularly assessed by quantitative pilocarpine iontophoresis (QPIT), the measurement of ß-adrenergic sweat secretion is not yet established in clinical practice. METHODS: A novel sweat bubble imaging protocol was developed that determines sweat secretion rates by automatic recording, processing and quality control of the kinetics of sweat droplet formation. RESULTS: Treatment of CF patients with the CFTR modulators elexacaftor, tezacaftor and ivacaftor reduced the sweat chloride concentration measured in QPIT in the majority of patients to values in the intermediate or normal range. In contrast, the ß-adrenergically-stimulated sweat secretion rate assayed by the automated bubble sweat test was normalized in only 3 patients, slightly increased in 12 patients and remained undetectable in 8 patients. CONCLUSIONS: ß-adrenergic sweat stimulation in the coil is apparently rather stringent in its requirements for a wild type CFTR conformation whereas chloride reabsorption in the duct tolerates residual structural and functional deficits of native or pharmacologically rescued mutant CFTR in the apical membrane.


Subject(s)
Cystic Fibrosis , Adrenergic Agents/analysis , Adrenergic Agents/therapeutic use , Aminophenols , Benzodioxoles , Chloride Channel Agonists , Chlorides/analysis , Cystic Fibrosis/diagnosis , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/analysis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Humans , Indoles , Pyrazoles , Pyridines , Pyrrolidines , Quinolones , Sweat/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...