Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 68(7): 1375-1395, 2020 07.
Article in English | MEDLINE | ID: mdl-32045043

ABSTRACT

Satellite glial cells (SGCs) are homeostatic cells enveloping the somata of peripheral sensory and autonomic neurons. A wide variety of neuronal stressors trigger activation of SGCs, contributing to, for example, neuropathic pain through modulation of neuronal activity. However, compared to neurons and other glial cells of the nervous system, SGCs have received modest scientific attention and very little is known about SGC biology, possibly due to the experimental challenges associated with studying them in vivo and in vitro. Utilizing a recently developed method to obtain SGC RNA from dorsal root ganglia (DRG), we took a systematic approach to characterize the SGC transcriptional fingerprint by using next-generation sequencing and, for the first time, obtain an overview of the SGC injury response. Our RNA sequencing data are easily accessible in supporting information in Excel format. They reveal that SGCs are enriched in genes related to the immune system and cell-to-cell communication. Analysis of SGC transcriptional changes in a nerve injury-paradigm reveal a differential response at 3 days versus 14 days postinjury, suggesting dynamic modulation of SGC function over time. Significant downregulation of several genes linked to cholesterol synthesis was observed at both time points. In contrast, regulation of gene clusters linked to the immune system (MHC protein complex and leukocyte migration) was mainly observed after 14 days. Finally, we demonstrate that, after nerve injury, macrophages are in closer physical proximity to both small and large DRG neurons, and that previously reported injury-induced proliferation of SGCs may, in fact, be proliferating macrophages.


Subject(s)
Ganglia, Spinal/cytology , Neuroglia/cytology , Peripheral Nerve Injuries/metabolism , Satellite Cells, Perineuronal/metabolism , Animals , Cell Communication/physiology , Female , Male , Mice, Inbred C57BL , Neuralgia/metabolism , Neuroglia/metabolism , Neurons/cytology , RNA/metabolism , Satellite Cells, Perineuronal/physiology
2.
Sci Adv ; 5(6): eaav9946, 2019 06.
Article in English | MEDLINE | ID: mdl-31223654

ABSTRACT

Neuropathic pain is a major incurable clinical problem resulting from peripheral nerve trauma or disease. A central mechanism is the reduced expression of the potassium chloride cotransporter 2 (KCC2) in dorsal horn neurons induced by brain-derived neurotrophic factor (BDNF), causing neuronal disinhibition within spinal nociceptive pathways. Here, we demonstrate how neurotensin receptor 2 (NTSR2) signaling impairs BDNF-induced spinal KCC2 down-regulation, showing how these two pathways converge to control the abnormal sensory response following peripheral nerve injury. We establish how sortilin regulates this convergence by scavenging neurotensin from binding to NTSR2, thus modulating its inhibitory effect on BDNF-mediated mechanical allodynia. Using sortilin-deficient mice or receptor inhibition by antibodies or a small-molecule antagonist, we lastly demonstrate that we are able to fully block BDNF-induced pain and alleviate injury-induced neuropathic pain, validating sortilin as a clinically relevant target.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neuralgia/metabolism , Neurotensin/metabolism , Animals , Down-Regulation/physiology , Female , Humans , Hyperalgesia/metabolism , Male , Mice , Mice, Inbred C57BL , Peripheral Nerve Injuries/metabolism , Receptors, Neurotensin/metabolism , Signal Transduction/physiology
3.
Protein Sci ; 23(9): 1291-300, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24985322

ABSTRACT

Sortilin is a multifunctional receptor involved in sorting and apoptosis. We have previously reported a 2.0-Å structure of the Vps10 ectodomain in complex with one of its ligands, the tridecapeptide neurotensin. Here we set out to further characterize the structural properties of sortilin and its interaction with neurotensin. To this end, we have determined a new 2.7 Å structure using a crystal grown with a 10-fold increased concentration of neurotensin. Here a second peptide fragment was observed within the Vps10 ß-propeller, which may in principle either represent a second molecule of neurotensin or the N-terminal part of the molecule bound at the previously identified binding site. However, in vitro binding experiments strongly favor the latter hypothesis. Neurotensin thus appears to bind with a 1:1 stoichiometry, and whereas the N-terminus does not bind on its own, it enhances the affinity in context of full-length neurotensin. We conclude that the N-terminus of neurotensin probably functions as an affinity enhancer for binding to sortilin by engaging the second binding site. Crystal packing differs partly from the previous structure, which may be due to variations in the degree and pattern of glycosylations. Consequently, a notable hydrophobic loop, not modeled previously, could now be traced. A computational analysis suggests that this and a neighboring loop may insert into the membrane and thus restrain movement of the Vps10 domain. We have, furthermore, mapped all N-linked glycosylations of CHO-expressed human sortilin by mass spectrometry and find that their locations are compatible with membrane insertion of the hydrophobic loops.


Subject(s)
Adaptor Proteins, Vesicular Transport/chemistry , Neurotensin/chemistry , Vesicular Transport Proteins/chemistry , Humans , Models, Molecular , Protein Conformation
4.
PLoS One ; 8(9): e75006, 2013.
Article in English | MEDLINE | ID: mdl-24069373

ABSTRACT

SORCS3 is an orphan receptor of the VPS10P domain receptor family, a group of sorting and signaling receptors central to many pathways in control of neuronal viability and function. SORCS3 is highly expressed in the CA1 region of the hippocampus, but the relevance of this receptor for hippocampal activity remained absolutely unclear. Here, we show that SORCS3 localizes to the postsynaptic density and that loss of receptor activity in gene-targeted mice abrogates NMDA receptor-dependent and -independent forms of long-term depression (LTD). Consistent with a loss of synaptic retraction, SORCS3-deficient mice suffer from deficits in behavioral activities associated with hippocampal LTD, particularly from an accelerated extinction of fear memory. A possible molecular mechanism for SORCS3 in synaptic depression was suggested by targeted proteomics approaches that identified the ability of SORCS3 to functionally interact with PICK1, an adaptor that sorts glutamate receptors at the postsynapse. Faulty localization of PICK1 in SORCS3-deficient neurons argues for altered glutamate receptor trafficking as the cause of altered synaptic plasticity in the SORCS3-deficient mouse model. In conclusion, our studies have identified a novel function for VPS10P domain receptors in control of synaptic depression and suggest SORCS3 as a novel factor modulating aversive memory extinction.


Subject(s)
Extinction, Psychological/physiology , Fear/physiology , Long-Term Synaptic Depression/physiology , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Animals , Behavior, Animal , Carrier Proteins/metabolism , Cell Cycle Proteins , Cell Line , Evoked Potentials , Gene Expression , Hippocampus/metabolism , Humans , Male , Memory , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Neuronal Plasticity/physiology , Neurons/metabolism , Nuclear Proteins/metabolism , Post-Synaptic Density/metabolism , Protein Binding , Protein Transport , Receptors, Cell Surface/genetics
5.
Eur J Biochem ; 269(11): 2755-63, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12047385

ABSTRACT

The present work reports isolation and characterization of a highly glycosylated protein from bovine milk fat globule membranes, known as PAS III. Partial amino-acid sequencing of the purified protein allowed construction of degenerate oligonucleotide primers, enabling isolation of a full-length cDNA encoding a protein of 330 amino-acid residues. N-terminal amino-acid sequencing of derived peptides and the purified protein confirmed 76% of the sequence and demonstrated presence of a cleavable signal peptide of 23 residues, leaving a mature protein of 307 amino acids. Database searches showed no homology to any other proteins. A survey of the human genome indicated the presence of a corresponding gene on chromosome band 11p14.3. Isolation and sequencing of the complete cDNA sequence of the human homologue proved the existence of the gene product (334 amino-acid residues). This novel mucin-like protein was named MUC15 by appointment of the HUGO Gene Nomenclature Committee. The deduced amino-acid sequences of human and bovine MUC15 demonstrated structural hallmarks characteristic for other membrane-bound mucins, such as a serine, threonine, and proline-rich extracellular region with several potential glycosylation sites, a putative transmembrane domain, and a short cytoplasmic C-terminal. We have shown the presence of O-glycosylations, identified N-glycosylations at 11 of 15 potential sites in bovine MUC15, and a splice variant encoding a short secreted mucin. Finally, analysis of human and bovine cDNA panels and libraries showed MUC15 gene expression in adult human spleen, thymus, prostate, testis, ovary, small intestine, colon, peripheral blood leukocyte, bone marrow, lymph node, tonsil, breast, fetal liver, bovine lymph nodes and lungs of both species.


Subject(s)
Membrane Proteins/metabolism , Mucins/metabolism , Alternative Splicing , Amino Acid Sequence , Animals , Cattle , Cloning, Molecular , Glycosylation , Humans , Membrane Proteins/analysis , Membrane Proteins/isolation & purification , Molecular Sequence Data , Mucins/analysis , Mucins/isolation & purification , Organ Specificity , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...