Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fluid Phase Equilib ; 470: 38-50, 2018 Aug 25.
Article in English | MEDLINE | ID: mdl-29915448

ABSTRACT

Triplet correlations play a central role in our understanding of fluids and their properties. Of particular interest is the relationship between the pair and triplet correlations. Here we use a combination of Fluctuation Solution Theory and experimental pair radial distribution functions to investigate the accuracy of the Kirkwood Superposition Approximation (KSA), as given by integrals over the relevant pair and triplet correlation functions, at a series of state points for pure water using only experimental quantities. The KSA performs poorly, in agreement with a variety of other studies. Several additional approximate relationships between the pair and triplet correlations in fluids are also investigated and generally provide good agreement for the fluid thermodynamics for regions of the phase diagram where the compressibility is small. A simple power law relationship between the pair and triplet fluctuations is particularly successful for state points displaying low to moderately high compressibilities.

2.
J Phys Chem B ; 119(51): 15706-17, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26619142

ABSTRACT

Preferential solvation has become a useful tool to help characterize and understand the properties of liquid mixtures. Here, we provide a new quantitative measure of preferential solvation in binary and ternary mixtures that uses Kirkwood-Buff integrals as input, but differs from traditional measures. The advantages of the new measure are highlighted and compared with established literature approaches. Molecular dynamics simulations are performed to further investigate the nature of binary mixtures, as described by the new and existing measures of preferential solvation. It is shown that the new measure of preferential solvation is rigorous, has a simple physical interpretation, can be easily related to the underlying thermodynamic properties of the mixture, and naturally leads to zero values for ideal mixtures.


Subject(s)
Complex Mixtures , Solvents/chemistry , Molecular Dynamics Simulation , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...