Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 19(8): e1011603, 2023 08.
Article in English | MEDLINE | ID: mdl-37624867

ABSTRACT

Antibodies result from the competition of B cell lineages evolving under selection for improved antigen recognition, a process known as affinity maturation. High-affinity antibodies to pathogens such as HIV, influenza, and SARS-CoV-2 are frequently reported to arise from B cells whose receptors, the precursors to antibodies, are encoded by particular immunoglobulin alleles. This raises the possibility that the presence of particular germline alleles in the B cell repertoire is a major determinant of the quality of the antibody response. Alternatively, initial differences in germline alleles' propensities to form high-affinity receptors might be overcome by chance events during affinity maturation. We first investigate these scenarios in simulations: when germline-encoded fitness differences are large relative to the rate and effect size variation of somatic mutations, the same germline alleles persistently dominate the response of different individuals. In contrast, if germline-encoded advantages can be easily overcome by subsequent mutations, allele usage becomes increasingly divergent over time, a pattern we then observe in mice experimentally infected with influenza virus. We investigated whether affinity maturation might nonetheless strongly select for particular amino acid motifs across diverse genetic backgrounds, but we found no evidence of convergence to similar CDR3 sequences or amino acid substitutions. These results suggest that although germline-encoded specificities can lead to similar immune responses between individuals, diverse evolutionary routes to high affinity limit the genetic predictability of responses to infection and vaccination.


Subject(s)
COVID-19 , Animals , Mice , COVID-19/genetics , SARS-CoV-2/genetics , Antibodies , Alleles , Germ Cells
2.
Hum Vaccin Immunother ; 19(1): 2189885, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37113023

ABSTRACT

Matrix-M™ adjuvant is a key component of several novel vaccine candidates. The Matrix-M adjuvant consists of two distinct fractions of saponins purified from the Quillaja saponaria Molina tree, combined with cholesterol and phospholipids to form 40-nm open cage-like nanoparticles, achieving potent adjuvanticity with a favorable safety profile. Matrix-M induces early activation of innate immune cells at the injection site and in the draining lymph nodes. This translates into improved magnitude and quality of the antibody response to the antigen, broadened epitope recognition, and the induction of a Th1-dominant immune response. Matrix-M-adjuvanted vaccines have a favorable safety profile and are well tolerated in clinical trials. In this review, we discuss the latest findings on the mechanisms of action, efficacy, and safety of Matrix-M adjuvant and other saponin-based adjuvants, with a focus on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit vaccine candidate NVX-CoV2373 developed to prevent coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 , Saponins , Vaccines , Humans , COVID-19/prevention & control , SARS-CoV-2 , Adjuvants, Immunologic
3.
Front Immunol ; 14: 1323969, 2023.
Article in English | MEDLINE | ID: mdl-38259486

ABSTRACT

Lack of complement factor C1q of the classical pathway results in severely impaired primary antibody responses. This is a paradox because antibodies, especially IgM, are the most efficient activators of the classical pathway and very little specific IgM will be present at priming. A possible explanation would be that natural IgM, binding with low affinity to the antigen, may suffice to activate complement. In support of this, mice lacking secretory IgM have an impaired antibody response, which can be rescued by transfer of non-immune IgM. Moreover, passive administration of specific IgM together with antigen enhances the antibody response in a complement-dependent fashion. To test the idea, we have used a knock-in mouse strain (Cµ13) carrying a point mutation in the IgM heavy chain, rendering the IgM unable to activate complement. Mutant mice backcrossed to BALB/c or C57BL/6 background were primed and boosted with a low dose of sheep red blood cells. Confirming earlier data, no impairment in early, primary IgM- or IgG-responses were seen in either of the Cµ13 strains. However, in one of the mutant strains, late primary IgG responses were impaired. A more pronounced effect was observed after boost, when the IgG response, the number of germinal center B cells and antibody secreting cells as well as the opsonization of antigen were impaired in mutant mice. We conclude that complement activation by natural IgM cannot explain the role of C1q in primary antibody responses, but that endogenous, specific, wildtype IgM generated after immunization feedback-enhances the response to a booster dose of antigen. Importantly, this mechanism can only partially explain the role of complement in the generation of antibody responses because the IgG response was much lower in C3- or complement receptor 1 and 2-deficient mice than in Cµ13 mice.


Subject(s)
Antibody Formation , Complement C1q , Animals , Mice , Sheep , Mice, Inbred C57BL , Complement System Proteins , Immunoglobulin M , Cell Differentiation , Immunoglobulin G
4.
J Autoimmun ; 119: 102627, 2021 05.
Article in English | MEDLINE | ID: mdl-33640662

ABSTRACT

Marginal zone (MZ) B cells comprise a subset of innate-like B cells found predominantly in the spleen, but also in lymph nodes and blood. Their principal functions are participation in quick responses to blood-borne pathogens and secretion of natural antibodies. The latter is important for housekeeping functions such as clearance of apoptotic cell debris. MZ B cells have B cell receptors with low poly-/self-reactivity, but they are not pathogenic at steady state. However, if simultaneously stimulated with self-antigen and pathogen- and/or damage-associated molecular patterns (PAMPs/DAMPs), MZ B cells may participate in the initial steps towards breakage of immunological tolerance. This review summarizes what is known about the role of MZ B cells in autoimmunity, both in mouse models and human disease. We cover factors important for shaping the MZ B cell compartment, how the functional properties of MZ B cells may contribute to breaking tolerance, and how MZ B cells are being regulated.


Subject(s)
Autoimmunity , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Homeostasis/immunology , Animals , Antigen Presentation , Autoantibodies/immunology , Autoantigens/immunology , Biomarkers , Disease Susceptibility , Humans , Immunomodulation , Immunophenotyping , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Organ Specificity , Receptors, Antigen, B-Cell/metabolism , Spleen/cytology , Spleen/immunology , Spleen/metabolism
5.
Sci Transl Med ; 12(573)2020 12 09.
Article in English | MEDLINE | ID: mdl-33298562

ABSTRACT

Humans are repeatedly exposed to variants of influenza virus throughout their lifetime. As a result, preexisting influenza-specific memory B cells can dominate the response after infection or vaccination. Memory B cells recalled by adulthood exposure are largely reactive to conserved viral epitopes present in childhood strains, posing unclear consequences on the ability of B cells to adapt to and neutralize newly emerged strains. We sought to investigate the impact of preexisting immunity on generation of protective antibody responses to conserved viral epitopes upon influenza virus infection and vaccination in humans. We accomplished this by characterizing monoclonal antibodies (mAbs) from plasmablasts, which are predominantly derived from preexisting memory B cells. We found that, whereas some influenza infection-induced mAbs bound conserved and neutralizing epitopes on the hemagglutinin (HA) stalk domain or neuraminidase, most of the mAbs elicited by infection targeted non-neutralizing epitopes on nucleoprotein and other unknown antigens. Furthermore, most infection-induced mAbs had equal or stronger affinity to childhood strains, indicating recall of memory B cells from childhood exposures. Vaccination-induced mAbs were similarly induced from past exposures and exhibited substantial breadth of viral binding, although, in contrast to infection-induced mAbs, they targeted neutralizing HA head epitopes. Last, cocktails of infection-induced mAbs displayed reduced protective ability in mice compared to vaccination-induced mAbs. These findings reveal that both preexisting immunity and exposure type shape protective antibody responses to conserved influenza virus epitopes in humans. Natural infection largely recalls cross-reactive memory B cells against non-neutralizing epitopes, whereas vaccination harnesses preexisting immunity to target protective HA epitopes.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Adult , Animals , Antibodies, Neutralizing , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Humans , Influenza, Human/prevention & control , Mice , Vaccination
6.
Immunity ; 53(6): 1230-1244.e5, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33096040

ABSTRACT

Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.


Subject(s)
B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Orthomyxoviridae/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Affinity , Broadly Neutralizing Antibodies/genetics , Cross Reactions , Epitopes, B-Lymphocyte/immunology , Genes, Immunoglobulin , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Orthomyxoviridae/classification , Protein Domains , Somatic Hypermutation, Immunoglobulin
7.
Lancet Infect Dis ; 20(1): 80-91, 2020 01.
Article in English | MEDLINE | ID: mdl-31630990

ABSTRACT

BACKGROUND: Influenza viruses cause substantial annual morbidity and mortality globally. Current vaccines protect against influenza only when well matched to the circulating strains. However, antigenic drift can cause considerable mismatches between vaccine and circulating strains, substantially reducing vaccine effectiveness. Moreover, current seasonal vaccines are ineffective against pandemic influenza, and production of a vaccine matched to a newly emerging virus strain takes months. Therefore, there is an unmet medical need for a broadly protective influenza virus vaccine. We aimed to test the ability of chimeric H1 haemagglutinin-based universal influenza virus vaccine candidates to induce broadly cross-reactive antibodies targeting the stalk domain of group 1 haemagglutinin-expressing influenza viruses. METHODS: We did a randomised, observer-blinded, phase 1 study in healthy adults in two centres in the USA. Participants were randomly assigned to one of three prime-boost, chimeric haemagglutinin-based vaccine regimens or one of two placebo groups. The vaccine regimens included a chimeric H8/1, intranasal, live-attenuated vaccine on day 1 followed by a non-adjuvanted, chimeric H5/1, intramuscular, inactivated vaccine on day 85; the same regimen but with the inactivated vaccine being adjuvanted with AS03; and an AS03-adjuvanted, chimeric H8/1, intramuscular, inactivated vaccine followed by an AS03-adjuvanted, chimeric H5/1, intramuscular, inactivated vaccine. In this planned interim analysis, the primary endpoints of reactogenicity and safety were assessed by blinded study group. We also assessed anti-H1 haemagglutinin stalk, anti-H2, anti-H9, and anti-H18 IgG antibody titres and plasmablast and memory B-cell responses in peripheral blood. This trial is registered with ClinicalTrials.gov, number NCT03300050. FINDINGS: Between Oct 10, 2017, and Nov 27, 2017, 65 participants were enrolled and randomly assigned. The adjuvanted inactivated vaccine, but not the live-attenuated vaccine, induced a substantial serum IgG antibody response after the prime immunisation, with a seven times increase in anti-H1 stalk antibody titres on day 29. After boost immunisation, all vaccine regimens induced detectable anti-H1 stalk antibody (2·2-5·6 times induction over baseline), cross-reactive serum IgG antibody, and peripheral blood plasmablast responses. An unsolicited adverse event was reported for 29 (48%) of 61 participants. Solicited local adverse events were reported in 12 (48%) of 25 participants following prime vaccination with intramuscular study product or placebo, in 12 (33%) of 36 after prime immunisation with intranasal study product or placebo, and in 18 (32%) of 56 following booster doses of study product or placebo. Solicited systemic adverse events were reported in 14 (56%) of 25 after prime immunisation with intramuscular study product or placebo, in 22 (61%) of 36 after immunisation with intranasal study product or placebo, and in 21 (38%) of 56 after booster doses of study product or placebo. Disaggregated safety data were not available at the time of this interim analysis. INTERPRETATION: The tested chimeric haemagglutinin-based, universal influenza virus vaccine regimens elicited cross-reactive serum IgG antibodies that targeted the conserved haemagglutinin stalk domain. This is the first proof-of-principle study to show that high anti-stalk titres can be induced by a rationally designed vaccine in humans and opens up avenues for further development of universal influenza virus vaccines. On the basis of the blinded study group, the vaccine regimens were tolerable and no safety concerns were observed. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Adjuvants, Immunologic , Hemagglutinins , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Vaccination , Adjuvants, Immunologic/administration & dosage , Adult , Female , Healthy Volunteers , Humans , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Male , Vaccines, Attenuated/immunology , Vaccines, Inactivated/immunology
8.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31434733

ABSTRACT

Vaccination is the best measure of protection against influenza virus infection. Vaccine-induced antibody responses target mainly the hemagglutinin (HA) surface glycoprotein, composed of the head and the stalk domains. Recently two novel vaccine platforms have been developed for seasonal influenza vaccination: a recombinant HA vaccine produced in insect cells (Flublok) and Flucelvax, prepared from virions produced in mammalian cells. In order to compare the fine specificity of the antibodies induced by these two novel vaccine platforms, we characterized 42 Flublok-induced monoclonal antibodies (MAbs) and 38 Flucelvax-induced MAbs for avidity, cross-reactivity, and any selectivity toward the head versus the stalk domain. These studies revealed that Flublok induced a greater proportion of MAbs targeting epitopes near the receptor-binding domain on HA head (hemagglutinin inhibition-positive MAbs) than Flucelvax, while the two vaccines induced similar low frequencies of stalk-reactive MAbs. Finally, mice immunized with Flublok and Flucelvax also induced similar frequencies of stalk-reactive antibody-secreting cells, showing that HA head immunodominance is independent of immune memory bias. Collectively, our results suggest that these vaccine formulations are similarly immunogenic but differ in the preferences of the elicited antibodies toward the receptor-binding domain on the HA head.IMPORTANCE There are ongoing efforts to increase the efficacy of influenza vaccines and to promote production strategies that can rapidly respond to newly emerging viruses. It is important to understand if current alternative seasonal vaccines, such as Flublok and Flucelvax, that use alternate production strategies can induce protective influenza-specific antibodies and to evaluate what type of epitopes are targeted by distinct vaccine formulations.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Vaccines, Inactivated/immunology , Adolescent , Adult , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Cohort Studies , Female , Hemagglutination Inhibition Tests , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/virology , Male , Mice, Inbred BALB C , Middle Aged , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Sequence Homology , Vaccination , Vaccines, Inactivated/administration & dosage , Young Adult
9.
Front Immunol ; 10: 1787, 2019.
Article in English | MEDLINE | ID: mdl-31417562

ABSTRACT

The success of vaccines is dependent on the generation and maintenance of immunological memory. The immune system can remember previously encountered pathogens, and memory B and T cells are critical in secondary responses to infection. Studies in mice have helped to understand how different memory B cell populations are generated following antigen exposure and how affinity for the antigen is determinant to B cell fate. Additionally, such studies were fundamental in defining memory B cell niches and how B cells respond following subsequent exposure with the same antigen. On the other hand, human studies are essential to the development of better, newer vaccines but sometimes limited by the difficulty to access primary and secondary lymphoid organs. However, work using human influenza and HIV virus infection and/or immunization in particular has significantly advanced today's understanding of memory B cells. This review will focus on the generation, function, and longevity of B-cell mediated immunological memory (memory B cells and plasma cells) in response to infection and vaccination both in mice and in humans.


Subject(s)
B-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/immunology , Immunologic Memory , Influenza A virus/immunology , Influenza, Human/immunology , Vaccination , Animals , Humans , Mice , T-Lymphocytes/immunology , Time Factors
10.
Cell Host Microbe ; 25(3): 357-366.e6, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30795982

ABSTRACT

Influenza is a leading cause of death in the elderly, and the vaccine protects only a fraction of this population. A key aspect of antibody-mediated anti-influenza virus immunity is adaptation to antigenically distinct epitopes on emerging strains. We examined factors contributing to reduced influenza vaccine efficacy in the elderly and uncovered a dramatic reduction in the accumulation of de novo immunoglobulin gene somatic mutations upon vaccination. This reduction is associated with a significant decrease in the capacity of antibodies to target the viral glycoprotein, hemagglutinin (HA), and critical protective epitopes surrounding the HA receptor-binding domain. Immune escape by antigenic drift, in which viruses generate mutations in key antigenic epitopes, becomes highly exaggerated. Because of this reduced adaptability, most B cells activated in the elderly cohort target highly conserved but less potent epitopes. Given these findings, vaccines driving immunoglobulin gene somatic hypermutation should be a priority to protect elderly individuals.


Subject(s)
B-Lymphocytes/immunology , Epitopes/immunology , Immunity, Humoral , Influenza Vaccines/immunology , Orthomyxoviridae/immunology , Adult , Aged , Aged, 80 and over , Epitopes/genetics , Healthy Volunteers , Humans , Influenza Vaccines/administration & dosage , Middle Aged , Mutation , Orthomyxoviridae/genetics , Young Adult
11.
Cell ; 173(2): 417-429.e10, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625056

ABSTRACT

Antibodies to the hemagglutinin (HA) and neuraminidase (NA) glycoproteins are the major mediators of protection against influenza virus infection. Here, we report that current influenza vaccines poorly display key NA epitopes and rarely induce NA-reactive B cells. Conversely, influenza virus infection induces NA-reactive B cells at a frequency that approaches (H1N1) or exceeds (H3N2) that of HA-reactive B cells. NA-reactive antibodies display broad binding activity spanning the entire history of influenza A virus circulation in humans, including the original pandemic strains of both H1N1 and H3N2 subtypes. The antibodies robustly inhibit the enzymatic activity of NA, including oseltamivir-resistant variants, and provide robust prophylactic protection, including against avian H5N1 viruses, in vivo. When used therapeutically, NA-reactive antibodies protected mice from lethal influenza virus challenge even 48 hr post infection. These findings strongly suggest that influenza vaccines should be optimized to improve targeting of NA for durable and broad protection against divergent influenza strains.


Subject(s)
Antibodies, Monoclonal/immunology , Influenza, Human/pathology , Neuraminidase/immunology , Viral Proteins/immunology , Animals , Birds , Cross Reactions , Epitopes/immunology , Female , HEK293 Cells , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H3N2 Subtype/enzymology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza, Human/immunology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control
12.
Trends Immunol ; 39(1): 70-79, 2018 01.
Article in English | MEDLINE | ID: mdl-28867526

ABSTRACT

Antibody responses are essential for protection against influenza virus infection. Humans are exposed to a multitude of influenza viruses throughout their lifetime and it is clear that immune history influences the magnitude and quality of the antibody response. The 'original antigenic sin' concept refers to the impact of the first influenza virus variant encounter on lifelong immunity. Although this model has been challenged since its discovery, past exposure, and likely one's first exposure, clearly affects the epitopes targeted in subsequent responses. Understanding how previous exposure to influenza virus shapes antibody responses to vaccination and infection is critical, especially with the prospect of future pandemics and for the effective development of a universal influenza vaccine.


Subject(s)
Antigenic Variation , Influenza Vaccines/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/physiology , Animals , Antibodies, Viral/metabolism , Antibody Diversity , Antigens, Viral/metabolism , Environmental Exposure , Humans , Immunity, Humoral , Immunodominant Epitopes/metabolism , Immunologic Memory , Vaccination
13.
Sci Immunol ; 2(7)2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28783670

ABSTRACT

In this study, we report that antigen-specific CD19+CD27+CD21lo (CD21lo) B cells are transiently induced 14 to 28 days after immunization, at the time germinal centers (GCs) peak. Although clonally related to memory B cells and plasmablasts, CD21lo cells form distinct clades within phylogenetic trees based on accumulated variable gene mutations, supporting exit from active GCs. CD21lo cells express a transcriptional program, suggesting that they are primed for plasma cell differentiation and are refractory to GC differentiation, although they do not spontaneously secrete antibody. In addition, CD21lo cells differentially express multiple cell surface markers and have elevated intracellular levels of Blimp-1 and T-bet protein compared with memory B cells. Together, these data support a model in which CD21lo cells are recent GC graduates that represent a distinct population from CD27+ classical memory cells, are refractory to GC reentry, and are predisposed to differentiate into long-lived plasma cells.

14.
Vet Immunol Immunopathol ; 180: 59-65, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27692097

ABSTRACT

This study aimed to increase the knowledge on salivary antibodies in the horse since these constitute an important part of the immune defence of the oral cavity. For that purpose assays to detect horse immunoglobulin A (IgA) including secretory IgA (SIgA) were set up and the molecular weights of different components of the horse IgA system were estimated. Moreover, samples from 51 clinically healthy horses were tested for total SIgA and IgG amounts in saliva and relative IgG3/5 (IgG(T)) and IgG4/7 (IgGb) content were tested in serum and saliva. Results showed a mean concentration of 74µg SIgA/ml horse saliva and that there was a large inter-individual variation in salivary SIgA concentration. For total IgG the mean concentration was approx. 5 times lower than that of SIgA, i.e. 20µg IgG/ml saliva and the inter-individual variation was lower than that observed for SIgA. The saliva-serum ratio for IgG isotypes IgG3/5 and IgG4/7 was also assessed in the sampled horses and this analysis showed that the saliva-serum ratio of IgG4/7 was in general approximately 4 times higher than that of IgG3/5. The large inter-individual variation in salivary SIgA levels observed for the normal healthy horses in the present study emphasises the need for a large number of observations when studying this parameter especially in a clinical setting. Moreover, our results also indicated that some of the salivary IgG does not originate from serum but may be produced locally. Thus, these results provide novel insight, and a base for further research, into salivary antibody responses of horses.


Subject(s)
Horses/immunology , Immunoglobulin A, Secretory/analysis , Immunoglobulin G/analysis , Saliva/immunology , Animals , Immunoglobulin A, Secretory/isolation & purification , Immunoglobulin G/blood , Molecular Weight
15.
Blood ; 128(3): 317-8, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27445407
16.
Sci Rep ; 6: 27687, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27277419

ABSTRACT

Marginal zone (MZ) B cells, representing a distinct subset of innate-like B cells, mount rapid T-independent responses to blood-borne antigens. They express low-affinity polyreactive antigen receptors that recognize both foreign and self-structures. The spleen is considered the exclusive site for murine MZ B cells. However, we have here identified B cells with a MZ B-cell phenotype in the subcapsular sinuses of mouse lymph nodes. The nodal MZ (nMZ) B cells display high levels of IgM, costimulators and TLRs, and are represented by naïve and memory cells. The frequency of nMZ B cells is about 1-6% of nodal B cells depending on mouse strain, with higher numbers in older mice and a trend of increased numbers in females. There is a significant expansion of nMZ B cells following immunization with an autoantigen, but not after likewise immunization with a control protein or with the adjuvant alone. The nMZ B cells secrete autoantibodies upon activation and can efficiently present autoantigen to cognate T cells in vitro, inducing T-cell proliferation. The existence of self-reactive MZ B cells in lymph nodes may be a source of autoantigen-presenting cells that in an unfortunate environment may activate T cells leading to autoimmunity.


Subject(s)
Autoimmunity , B-Lymphocytes/cytology , Lymph Nodes/cytology , Animals , Autoantigens/immunology , B-Lymphocytes/immunology , Cell Proliferation , Female , Immunoglobulin M/immunology , Lymph Nodes/immunology , Lymphocyte Activation , Male , Mice , Mice, Inbred BALB C , Mice, Inbred CBA , Mice, Inbred DBA , Spleen/cytology , Spleen/immunology
17.
Sci Rep ; 6: 20531, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26847186

ABSTRACT

Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM(+) B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells.


Subject(s)
B-Lymphocytes/cytology , L-Selectin/metabolism , Mast Cells/cytology , Animals , Antigen Presentation , B-Lymphocytes/immunology , Cell Communication , Cell Differentiation , Cell Proliferation , Cells, Cultured , Coculture Techniques , Female , Lymphocyte Activation , Male , Mice
18.
Cell Mol Immunol ; 12(4): 493-504, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25958842

ABSTRACT

Polyreactive innate-type B cells account for many B cells expressing self-reactivity in the periphery. Improper regulation of these B cells may be an important factor that underlies autoimmune disease. Here we have explored the influence of self-reactive innate B cells in the development of collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis. We show that splenic marginal zone (MZ), but not B-1 B cells exhibit spontaneous IgM reactivity to autologous collagen II in nai¨ve mice. Upon immunization with heterologous collagen II in complete Freund's adjuvant the collagen-reactive MZ B cells expanded rapidly, while the B-1 B cells showed a modest anti-collagen response. The MZ B cells were easily activated by toll-like receptor (TLR) 4 and 9-ligands in vitro, inducing proliferation and cytokine secretion, implying that dual engagement of the B-cell receptor and TLRs may promote the immune response to self-antigen. Furthermore, collagen-primed MZ B cells showed significant antigen-presenting capacity as reflected by cognate T-cell proliferation in vitro and induction of IgG anti-collagen antibodies in vivo. MZ B cells that were deficient in complement receptors 1 and 2 demonstrated increased proliferation and cytokine production, while Fcγ receptor IIb deficiency of the cells lead to increased cytokine production and antigen presentation. In conclusion, our data highlight self-reactive MZ B cells as initiators of the autoimmune response in CIA, where complement and Fc receptors are relevant in controlling the self-reactivity in the cells.


Subject(s)
Arthritis, Rheumatoid/immunology , B-Lymphocyte Subsets/immunology , Cell Proliferation , Receptors, IgG/immunology , Spleen/immunology , Animals , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , B-Lymphocyte Subsets/pathology , Collagen/toxicity , Mice , Mice, Mutant Strains , Receptors, IgG/genetics , Spleen/pathology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...