Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(27): 24552-24559, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31246398

ABSTRACT

A waterborne, UV-blocking, and visually transparent nanocomposite coating was formulated with ZnO nanoparticles and 2-hydroxyethyl cellulose (HEC). The coating is highly effective (<5% UV and ∼65% visible transmittance), and the film thickness (0.2-2.5 µm) is ∼100 times thinner than the conventional coatings of similar UV-blocking performance. The superior properties are due to the fractal structures of ZnO nanoparticles assembled within the HEC matrix, revealed by scanning electron microscopy and small-angle X-ray scattering (SAXS). Changing the binder to 2-hydroxyethyl starch (HES) diminishes the UV-blocking performance, as ZnO nanoparticles form dense globular aggregates, with an aggregation number measured by SAXS 3 orders of magnitude larger than the HEC coating. Since HEC and HES share the same repeating glucose unit in the polymer backbone, it suggests that the conformational characteristics of the binder polymer have a strong influence on the nanoparticle aggregation, which plays a key role in determining the optical performance. Similar structures were achieved with TiO2 nanoparticles. This study not only offers a cost-effective and readily scalable method to fabricate transparent UV-blocking coating but also demonstrates that the unique fractal aggregation structures in a nanocomposite material can provide high performance and functionality without fully dispersing the nanoparticles.

2.
J Colloid Interface Sci ; 543: 34-42, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30776668

ABSTRACT

Emulsion polymerization is a versatile approach to produce different polymeric nanoparticle morphologies, which can be useful in a variety of applications. However, the detailed mechanism of the morphology formation is not entirely clear. We study the kinetics of nanoparticle morphology evolution during a seeded emulsion polymerization using both experimental and computational tools. Lightly crosslinked polystyrene seeds were first synthesized using dispersion polymerization. Then the seed particles were swollen in tert-butyl acrylate and styrene monomers, and subsequently polymerized into nanoparticles of dumbbell and multilobe morphologies. It was discovered that both the seed and final particle morphology were affected by the methanol concentration during the seed synthesis. Systematically adjusting the methanol amount will not only yield spherical seed particles of different size, but also dumbbell particles even without the second monomer polymerization. In addition to methanol concentration, morphology can be controlled by crosslinking density. The kinetics studies revealed an interesting transition from multilobe to dumbbell geometries during the secondary polymerization. Based on the results, a nucleation-growth model has been proposed to describe the morphology evolution and verification was offered by computer simulation. The key discovery is that nanoparticle morphology can be kinetically controlled by diffusion of the protrusions on the seed particles. The condition of seed synthesis and crosslinking density will drastically change the seed and final nanoparticle morphology.

SELECTION OF CITATIONS
SEARCH DETAIL
...