Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 11(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36365377

ABSTRACT

Competition for freshwater is increasing, with a growing population and the effects of climate change limiting its availability. In this experiment, Lactuca sativa plants were grown hydroponically with or without a 15% share of seawater (12 dS m-1) alone or intercropped with Salsola soda to demonstrate if L. sativa benefits from sodium removal by its halophyte companion. Contrary to the hypothesis, saline-grown L. sativa plants demonstrated reduced growth compared to the control plants regardless of the presence or absence of S. soda. Both limitations in CO2 supply and photosystem efficiency may have decreased CO2 assimilation rates and growth in L. sativa plants grown in the seawater-amended solutions. Surprisingly, leaf pigment concentrations increased in salt-treated L. sativa plants, and most notably among those intercropped with S. soda, suggesting that intercropping may have led to shade-induced increases in chlorophyll pigments. Furthermore, increased levels of proline indicate that salt-treated L. sativa plants were experiencing stress. In contrast, S. soda produced greater biomass in saline conditions than in control conditions. The mineral element, carbohydrate, protein, polyphenol and nitrate profiles of both species differed in their response to salinity. In particular, salt-sensitive L. sativa plants had greater accumulations of Fe, Ca, P, total phenolic compounds and nitrates under saline conditions than salt-tolerant S. soda. The obtained results suggest that intercropping salt-sensitive L. sativa with S. soda in a hydroponic system did not ameliorate the growing conditions of the salt-sensitive species as was hypothesized and may have exacerbated the abiotic stress by increasing competition for limited resources such as light. In contrast, the saline medium induced an improvement in the nutritional profile of S. soda. These results demonstrate an upper limit of the seawater share and planting density that can be used in saline agriculture when intercropping S. soda plants with other salt-sensitive crops.

2.
Photosynth Res ; 154(2): 155-167, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36104474

ABSTRACT

Leaf senescence at the end of the growing season is a complex process stimulated by changes in daylength and temperature that prepares deciduous trees for winter by reducing photosynthetic rates and remobilization of nutrients. Extending the duration of photosynthetic activity could have important consequences for the translocation of heavy metals in the phytoremediation of contaminated sites using deciduous trees like willow. In the present study, three Salix cultivars ('India,' 'SX67,' and 'Fish Creek') that were observed to maintain green leaves late into autumn were evaluated over an 11-week period extending from mid-September to mid-November on a brownfield site in Montreal, Canada. Gas exchange rates, chlorophyll fluorescence, and leaf pigments were measured weekly. A general trend of declining stomatal conductance and transpiration were observed early in the trial, followed by reductions in photosynthetic efficiency and concentrations of chl a, chl b, and carotenoids, in agreement with other studies. In particular, the cultivar 'Fish Creek' had higher rates of gas exchange and pigment concentrations than either 'SX67' or 'India,' but values for these parameters also declined more rapidly over the course of the trial. Both photoperiod and soil and air temperatures were strong drivers of changes in photosynthetic activity in all three of these cultivars according to correlation analyses. Further studies should focus on their biomass production and heavy metal accumulation capacity in light of the observed variation in photosynthetic activity stimulated by seasonal changes in light and temperature.


Subject(s)
Salix , Seasons , Chlorophyll , Photosynthesis , Trees , Plant Leaves
3.
Plants (Basel) ; 11(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35336622

ABSTRACT

Few phytoremediation studies have been conducted under semi-arid conditions where plants are subjected to drought and/or salinity stress. Although the genus Salix is frequently used in phytoremediation, information regarding its tolerance of drought and salinity is limited. In the present study, Salix acmophylla Boiss. cuttings from three sites (Adom, Darom and Mea She'arim) were tested for tolerance to salinity stress by growing them hydroponically under either control or increasing NaCl concentrations corresponding to electrical conductivities of 3 and 6 dS m-1 in a 42-day greenhouse trial. Gas exchange parameters, chlorophyll fluorescence and concentration, and water-use efficiency were measured weekly and biomass was collected at the end of the trial. Root, leaf and stem productivity was significantly reduced in the Adom ecotype, suggesting that Darom and Mea She'arim are the more salt-tolerant of the three ecotypes. Net assimilation and stomatal conductance rates in salt-treated Adom were significantly reduced by the last week of the trial, coinciding with reduced intrinsic water use efficiency and chlorophyll a content and greater stomatal aperture. In contrast, early reductions in stomatal conductance and stomatal aperture in Darom and Mea She'arim stabilized, together with pigment concentrations, especially carotenoids. These results suggest that Darom and Mea She'arim are more tolerant to salt than Adom, and provide further phenotypic support to the recently published data demonstrating their genetic similarities and their usefulness in phytoremediation under saline conditions.

4.
J Environ Manage ; 302(Pt A): 114012, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34731708

ABSTRACT

The volume of municipal solid waste (MSW) inputs is rapidly increasing with a growing human population, and its composition is changing due an increased diversity of materials being deposited. There is an associated increase in leachate, a common toxic byproduct of MSW facilities that must be collected and treated prior to its release into the environment. There is growing interest in plant-based methods that are economical and efficient for leachate toxicity assessment such as biological tests that use indicator species. In the present study, the tolerance thresholds of two herbaceous species, Sinapis alba L. (mustard) and Triticum aestivum L. (wheat) to increasing shares of leachate sourced from an MSW facility in the Czech Republic were assessed through a variety of physiological parameters. Soil-based biotests showed a stimulation in the shoot biomass, leaf expansion, primary root elongation and carbon assimilation rate of the selected plant species to leachate concentrations between 20 and 50 %. Higher leachate concentrations led to reductions in most physiological parameters, especially the elongation of seedling roots when growth solutions with >50 % leachate were applied. While S. alba was more sensitive to increasing proportions of leachate in terms of growth parameters of the shoot tissues, photosystem II efficiency and chlorophyll pigment concentrations were more responsive in T. aestivum, indicating species-dependent differences. The present biotests provide further support for the use of both Sinapis alba L and Triticum aestivum L. as indicator species of phytotoxicity.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Chlorophyll , Humans , Seedlings/chemistry , Sinapis , Solid Waste , Triticum , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
Waste Manag ; 136: 162-173, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34678658

ABSTRACT

Phytoremediation is a potentially suitable technique for the reclamation of toxic landfill leachate (LL) by decreasing its volume through water uptake and improving its composition by uptake, accumulation and amelioration of pollutants. We investigated the use of two parameters, the LL concentration and the Leachate Pollution Index (LPI), a method used to determine the phytotoxicity potential of a leachate source based on a weighted sum of its components, to set the best LL dilution to apply when poplar clone 'Orion' and willow clone 'Levante' are selected for phytoremediation. Cuttings were watered with five LL concentrations ranging from 0 to 100%. The poplar clone showed significantly higher values than the willow clone for lowest effective concentration index (LOEC) for leaf (i.e. 11.3% vs 10.5%; p = 0.0284) and total biomass (i.e. 10.9% vs 10.6%; p = 0.0402) and for lowest effective LPI for leaf (i.e. 12.3 vs 12.1; p = 0.0359) and total biomass (i.e. 12.8 versus 12.2; p = 0.0365), respectively, with effectiveness demonstrating the LOEC or LPI value at which the parameter is negatively affected. Photosynthetic rates were higher in poplar than willow in both control and the lowest LL dilution, but rapidly declined in both at higher LL dilutions. Although a direct translation of data from bench trials to field conditions should be investigated, we concluded that in the establishment phase, the poplar hybrid is more tolerant than the willow hybrid to LL. We also provide evidence for LPI as a potential predictor for setting LL irrigation levels in the initial phase of a phyto-treatment approach.


Subject(s)
Populus , Salix , Water Pollutants, Chemical , Biodegradation, Environmental , Biomass , Water Pollutants, Chemical/toxicity
6.
J Environ Manage ; 277: 111454, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33070021

ABSTRACT

Phytotechnological approaches using living plants are currently being proposed to address a wide range of environmental purposes including the treatment of landfill leachate (LL). Despite their popularity, few studies have investigated this possibility under actual Mediterranean conditions using fast-growing trees. This research reports the results of a two-year project where poplar and willow grown in mesocosm were tested for their ability to withstand and remove specific pollutants from different [Low: 7% (1st year) and 15% (2nd year); High: 15% (1st year) and 30% (2nd year)] amounts of LL. Results indicate that both species were able to treat 340 (Low) and 680 (High) m3 ha-1 in the establishment year (70 days) and 2470 (Low) and 4950 (High) m3 ha-1 in the second year (150 days). Both species yielded the same aboveground biomass, but under high LL treatment, poplar performed better than willow. Poplar showed on average significantly higher extraction rates for Cd, Cu, P, and N than willow. Moreover, under high LL treatment, poplar also seemed more efficient than willow in decreasing the concentration of specific pollutants (BOD5, COD and As) in output effluent. However, with low LL loads both species were able to significantly reduce other compounds (i.e. NH4-N, Cu and Ni). By contrast, Cl, surfactants, and NO3-N, had a tendency to accumulate over time in the effluent and could still represent an actual constraint to large-scale application of the technique. The fate of such pollutants should be investigated with further research to better inform strategies used to manage low amounts of high-concentrated effluent.


Subject(s)
Populus , Salix , Water Pollutants, Chemical , Biodegradation, Environmental , Climate
7.
J Environ Manage ; 247: 688-697, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31279146

ABSTRACT

At an Italian field test site the efficiency of phytoextraction of toxic trace elements (TEs) from the soil is determined by uptake capacity, bioavailability of TEs in the soil and biomass yield of the plants involved. Altering the quantity and type of biomass produced, especially among fast-growing trees, may be one method of increasing phytoextraction efficiency. In poplar bark and wood show different TE concentration. Poplar also shows changing proportions of bark and wood with increasing diameter at breast height (DBH). Though it is often thought that the amount of TE accumulated in the biomass increases with the size of the plant, in the current study we show that this is only partially true. In fact while Zn is highly accumulated by the largest (60 mm DBH) poplar plants, Cd, Cu, and Ni were more concentrated in slightly smaller plants (50 mm DBH), and Pb in even smaller (40 mm DBH). These findings could open new strategies for managing a poplar phytoextraction stand in terms of coppicing techniques and planting cycles in order to address specific targeted TEs and enhance the overall performance of this green technology.


Subject(s)
Metals, Heavy , Populus , Soil Pollutants , Trace Elements , Biodegradation, Environmental , Soil
8.
Plant Sci ; 280: 408-415, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30824019

ABSTRACT

Using various inhibitors and scavengers we took advantage of the size of sunflower (Helianthus annuus) seeds to investigate in vivo the effects of hormones, namely abscisic acid (ABA) and ethylene (ET), and reactive oxygen species (ROS) on the polarization of dormant (D) and non-dormant (ND) embryonic seed cells using microelectrodes. Our data show that D and ND seed cells present different polarization likely due to the regulation of plasma membrane (PM) H+-ATPase activity. The data obtained after addition of hormones or ROS scavengers further suggest that ABA dependent inhibition of PM H+-ATPases could participate in dormancy maintenance and that ET-and ROS-dependent PM H+-ATPase stimulation could participate in dormancy release in sunflower seeds.


Subject(s)
Helianthus/enzymology , Plant Dormancy , Plant Growth Regulators/metabolism , Proton-Translocating ATPases/metabolism , Reactive Oxygen Species/metabolism , Abscisic Acid/metabolism , Cell Membrane/enzymology , Ethylenes/metabolism , Germination , Helianthus/genetics , Helianthus/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Proton-Translocating ATPases/genetics , Seeds/enzymology , Seeds/genetics , Seeds/physiology
9.
Environ Res ; 164: 356-366, 2018 07.
Article in English | MEDLINE | ID: mdl-29567421

ABSTRACT

Phytoremediation is a green technique being increasingly used worldwide for various purposes including the treatment of municipal sewage sludge (MSS). Most plants proposed for this technique have high nutrient demands, and fertilization is often required to maintain soil fertility and nutrient balance while remediating the substrate. In this context, MSS could be a valuable source of nutrients (especially N and P) and water for plant growth. The aim of this study was to determine the capacity willow (Salix matsudana, cv Levante), poplar (Populus deltoides × Populus nigra, cv Orion), eucalyptus (Eucalyptus camaldulensis) and sunflower (Helianthus annuus) to clean MSS, which is slightly contaminated by trace elements (TEs) and organic pollutants, and to assess their physiological response to this medium. In particular, we aimed to evaluate the TE accumulation by different species as well as the decrease of TEs and organic pollutants in the sludge after one cropping cycle and the effect of MSS on plant growth and physiology. Since MSS did not show any detrimental effect on the biomass yield of any of the species tested, it was found to be a suitable growing medium for these species. TE phytoextraction rates depended on the species, with eucalyptus showing the highest accumulation for Cr, whereas sunflower exhibited the best performance for As, Cu and Zn. At the end of the trial, some TEs (i.e. Cr, Pb and Zn), n-alkanes and PCBs showed a significant concentration decrease in the sludge for all tested species. The highest Cr decrease was observed in pots with eucalyptus (57.4%) and sunflower (53.4%), whereas sunflower showed the highest Cu decrease (44.2%), followed by eucalyptus (41.2%), poplar (16.2%) and willow (14%). A significant decrease (41.1%) of Pb in the eucalyptus was observed. Zn showed a high decrease rate with sunflower (59.5%) and poplar (52%) and to a lesser degree with willow (35.3%) and eucalyptus (25.4%). The highest decrease in n-alkanes concentration in the sludge was found in willow (98.3%) and sunflower (97.3%), whereas eucalyptus has the lowest PCBs concentration (91.8%) in the sludge compared to the beginning of the trial. These results suggest new strategies (e.g. crop rotation and intercropping) to be adopted for a better management of this phytotechnology.


Subject(s)
Biodegradation, Environmental , Salix , Sewage , Soil Pollutants , Trace Elements , Soil
10.
Environ Sci Pollut Res Int ; 25(9): 9114-9131, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29340860

ABSTRACT

The current field study aims to assess the suitability of four different plant species (i.e. poplar, willow, hemp and alfalfa) to be used for trace element (TE) (i.e. Cd, Cu, Ni, Pb and Zn) phytoextraction under hot-arid Mediterranean climate conditions. Plants were grown for two consecutive years on a moderate TE contaminated soil, supplied with water and mineral nutrients. The growth and physiological parameters were assessed throughout the trial to compare the response of plants to the environmental pollution, and TE uptake rates were measured for aboveground plant tissues. The phytoextraction rate for each species was expressed as a function of aboveground biomass yield and the TE uptake and translocation within the plant. Alfalfa played a significant role in reducing extractable Ni (60.6%) and Zn (46%) in the soil, whereas hemp reduced 32% of extractable Cd and 46% of extractable Pb; poplar decreased extractable Cd (37%), Ni (49%), Pb (46%) and Zn (63%); and willow reduced the extractable Zn (73%) compared to the beginning of the trial. No change in total TE content was observed; however, poplar and willow were able to extract and accumulate the highest amount of Zn (3200 and 5200 g ha-1 year-1 respectively) and Cu (182 and 116 g ha-1 year-1), whereas hemp, with 36 g ha-1 year-1, showed the best phytoextraction potential for Pb. Overall, we found a positive correlation between the phytoextraction rate and biomass yield, extractable TE concentration and translocation factor (TF) and a negative relationship with Ca concentration in the soil.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Trace Elements/analysis , Biodegradation, Environmental , Biomass , Climate , Metals, Heavy/chemistry , Populus , Salix , Soil , Trace Elements/chemistry
11.
Environ Sci Pollut Res Int ; 25(2): 1331-1339, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29086177

ABSTRACT

This work investigated if the assessment of tolerance to trace metals can depend on plant density in the experimental design. A non-metallicolous and a metallicolous populations of Silene paradoxa were hydroponically cultivated at increasing density and in both the absence (-Cu conditions) and excess of copper (+Cu conditions). In -Cu conditions, the metallicolous population showed a lower susceptibility to plant density in comparison to the non-metallicolous one, explained by a higher capacity of the metallicolous population to exploit resources. In +Cu conditions, an alleviating effect of increasing density was found in roots. Such effect was present to a greater extent in the non-metallicolous population, thus making the populations equally copper-tolerant at the highest density used. In shoots, an additive effect of increasing plant density to copper toxicity was reported. Its higher intensity in the metallicolous population reverted the copper tolerance relationship at the highest plant densities used. In both populations, a density-induced decrease in root copper accumulation was observed, thus concurring to the reported mitigation in +Cu conditions. Our work revealed the importance of density studies on the optimization of eco-toxicological bioassays and of metal tolerance assessment and it can be considered the first example of an alleviating effect of increasing plant number on copper stress in a metallophyte.


Subject(s)
Copper/toxicity , Silene/drug effects , Soil Pollutants/toxicity , Hydroponics , Italy , Plant Roots/drug effects , Plant Roots/physiology , Population Density , Silene/physiology
12.
Funct Plant Biol ; 43(11): 1016-1027, 2016 Nov.
Article in English | MEDLINE | ID: mdl-32480523

ABSTRACT

Salt stress, among other abiotic stresses, has a high impact on crop yield. Salt tolerance is a multifactorial trait that involves the ability of cells to retain K ions, regulate reactive O species (ROS) production, and synthesise new molecules to cope with osmotic stress. In the present work, two different cultivars of Cucumis sativus L. (cv. Parys, sensitive; cv. Polan, tolerant) were selected based on their germination capabilities under 100mM NaCl. The capacity of these two cultivars to tolerate salt stress was analysed using several different physiological and genetic approaches. K+ fluxes from roots, as an immediate response to salinity, showed the higher ability of cv. Polan to maintain K+ compared with cv. Parys, according to the expression level of inward rectifying potassium channel 1 (AKT1). ROS production was also investigated in both cultivars and a higher basal ROS level was observed in cv. Polan than in cv. Parys. Concurrently, an increased basal level of respiratory burst oxidase homologue F (RBOHF) gene was also found, as well as a strong induction of the ethylene responsive factor 109 (ERF109) transcription factor after salt treatment in cv. Polan. Our data suggest that roots' ability to retain K+, a higher level of RBOHF and a strong induction of ERF109 should all be considered important components for salt tolerance in C. sativus.

13.
Funct Plant Biol ; 39(8): 679-688, 2012 Sep.
Article in English | MEDLINE | ID: mdl-32480819

ABSTRACT

The effect of serpentine soil-like low Ca:Mg ratios on growth was investigated in serpentine-adapted and nonadapted populations of Mimulus guttatus Fischer ex DC through soil and hydroponic reciprocal transplants. Adaptation to Ca:Mg ratios in M. guttatus was measured as differences in biomass accumulation, uptake of Ca and Mg, and photosynthetic rates. Serpentine-adapted plants persisted on both serpentine and nonserpentine soils, but nonadapted plants survived only on nonserpentine soil. When grown hydroponically, a low Ca:Mg ratio decreased the biomass of nonadapted plants but serpentine-adapted plants increased in biomass relative to their growth on high Ca:Mg. Internal concentrations of Ca and Mg mirrored those of the growth solution in both populations; however, serpentine-adapted M. guttatus had a higher shoot:root ratio of Mg when grown in low Ca:Mg solutions. Elevated Mg reduced photosynthetic rates in nonadapted plants without changes in chlorophyll concentration or photosystem efficiency. Hydroponic culture isolated the Ca:Mg ratio from other soil characteristics as the dominant factor affecting growth. Differences in the growth of plants from these populations in reciprocal transplant experiments indicate a genetic basis for a tolerance mechanism to low Ca:Mg, but one that is not based on the exclusion of Mg.

SELECTION OF CITATIONS
SEARCH DETAIL
...