Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Eur ; 36(1): 102, 2024.
Article in English | MEDLINE | ID: mdl-38784824

ABSTRACT

Background: Persistent, mobile and toxic (PMT), or very persistent and very mobile (vPvM) substances are a wide class of chemicals that are recalcitrant to degradation, easily transported, and potentially harmful to humans and the environment. Due to their persistence and mobility, these substances are often widespread in the environment once emitted, particularly in water resources, causing increased challenges during water treatment processes. Some PMT/vPvM substances such as GenX and perfluorobutane sulfonic acid have been identified as substances of very high concern (SVHCs) under the European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation. With hundreds to thousands of potential PMT/vPvM substances yet to be assessed and managed, effective and efficient approaches that avoid a case-by-case assessment and prevent regrettable substitution are necessary to achieve the European Union's zero-pollution goal for a non-toxic environment by 2050. Main: Substance grouping has helped global regulation of some highly hazardous chemicals, e.g., through the Montreal Protocol and the Stockholm Convention. This article explores the potential of grouping strategies for identifying, assessing and managing PMT/vPvM substances. The aim is to facilitate early identification of lesser-known or new substances that potentially meet PMT/vPvM criteria, prompt additional testing, avoid regrettable use or substitution, and integrate into existing risk management strategies. Thus, this article provides an overview of PMT/vPvM substances and reviews the definition of PMT/vPvM criteria and various lists of PMT/vPvM substances available. It covers the current definition of groups, compares the use of substance grouping for hazard assessment and regulation, and discusses the advantages and disadvantages of grouping substances for regulation. The article then explores strategies for grouping PMT/vPvM substances, including read-across, structural similarity and commonly retained moieties, as well as the potential application of these strategies using cheminformatics to predict P, M and T properties for selected examples. Conclusions: Effective substance grouping can accelerate the assessment and management of PMT/vPvM substances, especially for substances that lack information. Advances to read-across methods and cheminformatics tools are needed to support efficient and effective chemical management, preventing broad entry of hazardous chemicals into the global market and favouring safer and more sustainable alternatives.

2.
J Am Soc Mass Spectrom ; 35(5): 1021-1029, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38640444

ABSTRACT

Identification of stereo- and positional isomers detected with high-resolution mass spectrometry (HRMS) is often challenging due to near-identical fragmentation spectra (MS2), similar retention times, and collision cross-section values (CCS). Here we address this challenge on the example of hydroxylated polychlorinated biphenyls (OH-PCBs) with the aim to (1) distinguish between isomers of OH-PCBs using two-dimensional ion mobility spectrometry (2D-IMS) and (2) investigate the structure of the fragments of OH-PCBs and their fragmentation mechanisms by ion mobility spectrometry coupled to high-resolution mass spectrometry (IMS-HRMS). The MS2 spectra as well as CCS values of the deprotonated molecule and fragment ions were measured for 18 OH-PCBs using flow injections coupled to a cyclic IMS-HRMS. The MS2 spectra as well as the CCS values of the parent and fragment ions were similar between parent compound isomers; however, ion mobility separation of the fragment ions is hinting at the formation of isomeric fragments. Different parent compound isomers also yielded different numbers of isomeric fragment mobilogram peaks giving new insights into the fragmentation of these compounds and indicating new possibilities for identification. For spectral interpretation, Gibbs free energies and CCS values for the fragment ions of 4'-OH-CB35, 4'-OH-CB79, 2-OH-CB77 and 4-OH-CB107 were calculated and enabled assignment of structures to the isomeric mobilogram peaks of [M-H-HCl]- fragments. Finally, further fragmentation of the isomeric fragments revealed different fragmentation pathways depending on the isomeric fragment ions.

3.
Environ Sci Technol Lett ; 10(10): 865-871, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37840815

ABSTRACT

Transformation product (TP) information is essential to accurately evaluate the hazards compounds pose to human health and the environment. However, information about TPs is often limited, and existing data is often not fully Findable, Accessible, Interoperable, and Reusable (FAIR). FAIRifying existing TP knowledge is a relatively easy path toward improving access to data for identification workflows and for machine-learning-based algorithms. ShinyTPs was developed to curate existing transformation information derived from text-mined data within the PubChem database. The application (available as an R package) visualizes the text-mined chemical names to facilitate the user validation of the automatically extracted reactions. ShinyTPs was applied to a case study using 436 tentatively identified compounds to prioritize TP retrieval. This resulted in the extraction of 645 reactions (associated with 496 compounds), of which 319 were not previously available in PubChem. The curated reactions were added to the PubChem Transformations library, which was used as a TP suspect list for identification of TPs using the open-source workflow patRoon. In total, 72 compounds from the library were tentatively identified, 18% of which were curated using ShinyTPs, showing that the app can help support TP identification in non-target analysis workflows.

SELECTION OF CITATIONS
SEARCH DETAIL
...