Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Eur Radiol ; 34(3): 1736-1745, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37658144

ABSTRACT

OBJECTIVES: To determine if current clinical use of iodine contrast media (ICM) for computerised tomography (CT) increases the risk of acute kidney injury (AKI) and long-term decline in renal function in patients treated in intensive care. METHODS: A retrospective bi-centre cohort study was performed with critically ill subjects undergoing either ICM-enhanced or unenhanced CT. AKI was defined and staged based on the Kidney Disease Improve Global Outcome AKI criteria, using both creatinine and urine output criteria. Follow-up plasma creatinine was recorded three to six months after CT to assess any long-term effects of ICM on renal function. RESULTS: In total, 611 patients were included in the final analysis, median age was 65.0 years (48.0-73.0, quartile 1-quartile 3 (IQR)) and 62.5% were male. Renal replacement therapy was used post-CT in 12.9% and 180-day mortality was 31.2%. Plasma creatinine level on day of CT was 100.0 µmol/L (66.0-166.5, IQR) for non-ICM group and 77.0 µmol/L (59.0-109.0, IQR) for the ICM group. The adjusted odds ratio for developing AKI if the patient received ICM was 1.03 (95% confidence interval 0.64-1.66, p = 0.90). No significant association between ICM and increase in plasma creatinine at long-term follow-up was found, with an adjusted effect size of 2.92 (95% confidence interval - 6.52-12.36, p = 0.543). CONCLUSIONS: The results of this study do not indicate an increased risk of AKI or long-term decline in renal function when ICM is used for enhanced CT in patients treated at intensive care units. CLINICAL RELEVANCE STATEMENT: Patients treated in intensive care units had no increased risk of acute kidney injury or persistent decline in renal function after contrast-enhanced CT. This information underlines the need for a proper risk-reward assessment before denying patients a contrast-enhanced CT. KEY POINTS: • Iodine contrast media is considered a risk factor for the development of acute kidney injury. • Patients receiving iodine contrast media did not have an increased incidence of acute kidney injury or persistent decline in renal function. • A more clearly defined risk of iodine contrast media helps guide clinical decisions whether to perform contrast-enhanced CTs or not.


Subject(s)
Acute Kidney Injury , Iodine , Humans , Male , Aged , Female , Contrast Media/adverse effects , Cohort Studies , Retrospective Studies , Iodine/adverse effects , Critical Illness , Creatinine , Kidney , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Risk Factors , Tomography, X-Ray Computed/methods
2.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R337-R343, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37486069

ABSTRACT

Diabetes-induced glomerular hyperfiltration is an early alteration in kidney function in diabetes. Previous studies have shown that reduced adenosine A2a receptor signaling contributes to diabetes-induced glomerular hyperfiltration. The present study investigated the effects of enhanced interstitial adenosine concentration by inhibition of cellular adenosine reuptake, thereby promoting endogenous adenosine signaling. Insulinopenic diabetes was induced by streptozotocin in adult male Sprague-Dawley rats. Two weeks after diabetes induction, kidney function in terms of glomerular filtration rate, and total, cortical, and medullary renal blood flows were evaluated under thiobutabarbital anesthesia during baseline and after renal artery infusion of two doses of the adenosine reuptake inhibitor dilazep. Dilazep did not affect mean arterial pressure indicating that the effects of the interventions were intrarenal. Diabetics had increased glomerular filtration rate compared with controls and dilazep dose-dependently decreased glomerular filtration rate in diabetics, whereas it had no significant effect in controls. Dilazep increased cortical renal blood flows in controls, whereas medullary blood flow was not significantly changed. Dilazep did not affect total renal blood flow in any of the groups but decreased cortical blood flow in diabetics, resulting in decreased filtration fraction by dilazep in diabetics. Pretreatment with the adenosine A2a antagonist ZM241385 prevented intrarenal dilazep-mediated effects on glomerular filtration rate and filtration fraction in diabetics. In conclusion, enhancing intrarenal adenosine signaling by dilazep normalizes diabetes-induced glomerular hyperfiltration at least in part by activation of adenosine A2a receptors.


Subject(s)
Diabetes Mellitus , Kidney Diseases , Rats , Animals , Male , Rats, Sprague-Dawley , Dilazep/pharmacology , Adenosine/pharmacology , Kidney Glomerulus , Kidney , Glomerular Filtration Rate
3.
Am J Physiol Renal Physiol ; 324(6): F571-F580, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37102685

ABSTRACT

Sheep develop sepsis-associated acute kidney injury (SA-AKI) during experimental sepsis despite normal to increased renal oxygen delivery. A disturbed relation between oxygen consumption (V̇o2) and renal Na+ transport has been demonstrated in sheep and in clinical studies of AKI, which could be explained by mitochondrial dysfunction. We investigated the function of isolated renal mitochondria compared with renal oxygen handling in an ovine hyperdynamic model of SA-AKI. Anesthetized sheep were randomized to either an infusion of live Escherichia coli with resuscitative measures (sepsis group; n = 13 animals) or served as controls (n = 8 animals) for 28 h. Renal V̇o2 and Na+ transport were repeatedly measured. Live cortical mitochondria were isolated at baseline and at the end of the experiment and assessed in vitro with high-resolution respirometry. Sepsis markedly reduced creatinine clearance, and the relation between Na+ transport and renal V̇o2 was decreased in septic sheep compared with control sheep. Cortical mitochondrial function was altered in septic sheep with a reduced respiratory control ratio (6.0 ± 1.5 vs. 8.2 ± 1.6, P = 0.006) and increased complex II-to-complex I ratio during state 3 (1.6 ± 0.2 vs. 1.3 ± 0.1, P = 0.0014) mainly due to decreased complex I-dependent state 3 respiration (P = 0.016). However, no differences in renal mitochondrial efficiency or mitochondrial uncoupling were found. In conclusion, renal mitochondrial dysfunction composed of a reduction of the respiratory control ratio and an increased complex II/complex I relation in state 3 was demonstrated in an ovine model of SA-AKI. However, the disturbed relation between renal V̇o2 and renal Na+ transport could not be explained by a change in renal cortical mitochondrial efficiency or uncoupling.NEW & NOTEWORTHY We studied the function of renal cortical mitochondria in relation to oxygen consumption in an ovine model of sepsis with acute kidney injury. We demonstrated changes in the electron transport chain induced by sepsis consisting of a reduced respiratory control ratio mainly by a reduced complex I-mediated respiration. Neither an increase in mitochondrial uncoupling nor a reduction in mitochondrial efficiency was demonstrated and cannot explain why oxygen consumption was unaffected despite reduced tubular transport.


Subject(s)
Acute Kidney Injury , Sepsis , Animals , Acute Kidney Injury/metabolism , Escherichia coli , Kidney/metabolism , Mitochondria , Oxygen/metabolism , Sepsis/metabolism , Sheep
4.
Kidney Blood Press Res ; 48(1): 114-123, 2023.
Article in English | MEDLINE | ID: mdl-36791683

ABSTRACT

INTRODUCTION: Chronic kidney disease (CKD) is a global health problem with increasing incidence which is closely associated with cardiac dysfunction. In CKD, uremic toxins accumulate as kidney function declines. Additionally, high salt intake is a growing health issue worldwide which can exacerbate kidney disease. In this study, we investigated the effect of reducing plasma levels of protein-bound uremic toxins in a rat model of CKD, challenged with high salt intake and compared the effects to those of conventional treatment using an angiotensin-converting enzyme inhibitor (ACEI). METHODS: In rats, the right kidney and 2/3 of the left kidney were surgically removed (5/6 nephrectomy). Animals were fed a normal-salt diet and randomized to either no treatment (control) or chronic treatment with either the oral absorbent AST-120 to reduce plasma levels of protein-bound uremic toxins or the ACEI enalapril to inhibit angiotensin II signaling for 5 weeks. Following treatment, kidney function was measured before and after a week of high salt intake. Cardiac output and markers of oxidative stress were measured at the end of the study period. RESULTS: Treatment with AST-120 resulted in decreased levels of the uremic toxin indoxyl sulfate, improved cardiac output (mL/min: AST-120 44.9 ± 5.4 compared to control 26.6 ± 2.0; p < 0.05), and decreased urinary oxidative stress. ACEI reduced oxidative stress in kidney tissue and improved the glomerular filtration rate in response to high salt intake (mL/min: ACEI 1.5 ± 0.1; compared to control 1.1 ± 0.1; p < 0.05). Both interventions improved intrarenal oxygen availability (mm Hg: AST-120 42.8 ± 0.8; ACEI 43.2 ± 1.9; compared to control 33.4 ± 1.3; p < 0.05). CONCLUSION: AST-120 administered to reduce plasma levels of uremic toxins, such as indoxyl sulfate, has potential beneficial effects on both cardiac and kidney function. Targeting uremic toxins and angiotensin II signaling simultaneously could be an efficient strategy to target both cardiac and kidney dysfunction in CKD, to further slow progression of disease in patients with CKD.


Subject(s)
Renal Insufficiency, Chronic , Uremia , Animals , Rats , Angiotensin II , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Cardiac Output , Indican/pharmacology , Kidney , Renal Insufficiency, Chronic/drug therapy , Sodium Chloride, Dietary , Uremia/drug therapy , Uremic Toxins
5.
Ups J Med Sci ; 1282023.
Article in English | MEDLINE | ID: mdl-38188249

ABSTRACT

Background: Intrarenal hypoxia has been suggested a unifying pathway to chronic kidney disease (CKD) and increased mitochondria leak respiration, which increases mitochondrial oxygen usage and is one important mechanism contributing to the development of the hypoxia. Previous studies indicate that angiotensin II (Ang II) effects on mitochondria function could be dose dependent. We investigated how moderate and high levels of Ang II affect kidney mitochondria function and pathways of leak respiration. Methods: C57 black 6 mice were treated with either vehicle or Ang II in low dose (400 ng/kg/min) or high dose (1,000 ng/kg/min) for 4 weeks. The function of kidney cortex mitochondria was measured by high-resolution respirometry. Ang II effects on gene expression in kidney tissue were measured by quantitative real-time PCR. Thiobarbituric acids reactive substances were determined as a marker of oxidative stress, and urinary protein excretion was measured as a maker of kidney injury. Results: Low-dose Ang II induced overall mitochondria respiration, without compromising capacity of ATP production. Mitochondrial leak respiration was increased, and levels of oxidative stress were unchanged. However, high-dose Ang II decreased overall mitochondria respiration and reduced mitochondrial capacity for ATP production. Mitochondrial leak respiration was decreased, and oxidative stress increased in kidney tissue. Furthermore, gene expression of mediators that stimulate vasoconstriction and ROS production was increased, while components of counteracting pathways were decreased. Conclusions: In conclusion, Ang II dose-dependently affects mitochondrial function and leak respiration. Thus, Ang II has the potential to directly affect cellular metabolism during conditions of altered Ang II signaling.


Subject(s)
Angiotensin II , Kidney , Animals , Mice , Hypoxia , Mitochondria , Adenosine Triphosphate
6.
Crit Care ; 26(1): 262, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050748

ABSTRACT

BACKGROUND: Renal hypoperfusion has been suggested to contribute to the development of acute kidney injury (AKI) in critical COVID-19. However, limited data exist to support this. We aim to investigate the differences in renal perfusion, oxygenation and water diffusion using multiparametric magnetic resonance imaging in critically ill COVID-19 patients with and without AKI. METHODS: A prospective case-control study where patients without prior kidney disease treated in intensive care for respiratory failure due to COVID-19 were examined. Kidney Disease: Improving Global Outcomes Creatinine criteria were used for group allocation. Main comparisons were tested using Mann-Whitney U test. RESULTS: Nineteen patients were examined, ten with AKI and nine without AKI. Patients with AKI were examined in median 1 [0-2] day after criteria fulfillment. Age and baseline Plasma-Creatinine were similar in both groups. Total renal blood flow was lower in patients with AKI compared with patients without (median 645 quartile range [423-753] vs. 859 [746-920] ml/min, p = 0.037). Regional perfusion was reduced in both cortex (76 [51-112] vs. 146 [123-169] ml/100 g/min, p = 0.015) and medulla (28 [18-47] vs. 47 [38-73] ml/100 g/min, p = 0.03). Renal venous saturation was similar in both groups (72% [64-75] vs. 72% [63-84], ns.), as was regional oxygenation (R2*) in cortex (17 [16-19] vs. 17 [16-18] 1/s, ns.) and medulla (29 [24-39] vs. 27 [23-29] 1/s, ns.). CONCLUSIONS: In critically ill COVID-19 patients with AKI, the total, cortical and medullary renal blood flows were reduced compared with similar patients without AKI, whereas no differences in renal oxygenation were demonstrable in this setting. Trial registration ClinicalTrials ID: NCT02765191 , registered May 6 2014 and updated May 7 2020.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnostic imaging , COVID-19/complications , Case-Control Studies , Creatinine , Critical Illness , Humans , Magnetic Resonance Spectroscopy , Perfusion
7.
Front Physiol ; 13: 866590, 2022.
Article in English | MEDLINE | ID: mdl-35694398

ABSTRACT

Adenine nucleotide translocases (ANTs) and uncoupling proteins (UCPs) are known to facilitate proton leak across the inner mitochondrial membrane. However, it remains to be unravelled whether UCP2/3 contribute to significant amount of proton leak in vivo. Reports are indicative of UCP2 dependent proton-coupled efflux of C4 metabolites from the mitochondrial matrix. Previous studies have suggested that UCP2/3 knockdown (KD) contributes to increased ANT-dependent proton leak. Here we investigated the hypothesis that interaction exists between the UCP2 and ANT2 proteins, and that such interaction is regulated by the cellular metabolic demand. Protein-protein interaction was evaluated using reciprocal co-immunoprecipitation and in situ proximity ligation assay. KD of ANT2 and UCP2 was performed by siRNA in human embryonic kidney cells 293A (HEK293A) cells. Mitochondrial and cellular respiration was measured by high-resolution respirometry. ANT2-UCP2 interaction was demonstrated, and this was dependent on cellular metabolism. Inhibition of ATP synthase promoted ANT2-UCP2 interaction whereas high cellular respiration, induced by adding the mitochondrial uncoupler FCCP, prevented interaction. UCP2 KD contributed to increased carboxyatractyloside (CATR) sensitive proton leak, whereas ANT2 and UCP2 double KD reduced CATR sensitive proton leak, compared to UCP2 KD. Furthermore, proton leak was reduced in double KD compared to UCP2 KD. In conclusion, our results show that there is an interaction between ANT2-UCP2, which appears to be dynamically regulated by mitochondrial respiratory activity. This may have implications in the regulation of mitochondrial efficiency or cellular substrate utilization as increased activity of UCP2 may promote a switch from glucose to fatty acid metabolism.

8.
PLoS One ; 17(3): e0264524, 2022.
Article in English | MEDLINE | ID: mdl-35239685

ABSTRACT

The proposed mechanisms for the development of nephropathy are many, complex and often overlapping. Although recent literature strongly supports a role of kidney hypoxia as an independent pathway to nephropathy, the evidence remains inconclusive since the role of hypoxia is difficult to differentiate from confounding factors such as hyperglycemia, hypertension and oxidative stress. By increasing kidney oxygen consumption using triiodothyronine (T3) and, thus, avoiding these confounding factors, the aim of the present study was to investigate renal hypoxia per se as a causal pathway for the development of nephropathy. Healthy Sprague-Dawley rats were treated with T3 (10 µg/kg/day) and the angiotensin II AT1-receptor antagonist candesartan (1 mg/kg in drinking water) to eliminate effects of T3-induced renin release; and compared to a candesartan treated control group. After 7 weeks of treatment in vivo kidney function, oxygen metabolism and mitochondrial function were evaluated. T3 did not affect glomerular filtration rate or renal blood flow, but increased total kidney oxygen consumption resulting in cortical hypoxia. Nephropathy, demonstrated as albuminuria and tubulointerstitial fibrosis, developed in T3-treated animals. Mitochondria uncoupling mediated by uncoupling protein 2 and the adenosine nucleotide transporter was demonstrated as a mechanism causing the increased kidney oxygen consumption. Importantly, blood glucose levels, mean arterial blood pressure and oxidative stress levels were not affected by T3. In conclusion, the present study provides further evidence for increased kidney oxygen consumption causing intrarenal tissue hypoxia, as a causal pathway for development of nephropathy.


Subject(s)
Kidney Diseases , Animals , Female , Humans , Hypoxia/metabolism , Kidney/metabolism , Kidney Diseases/metabolism , Male , Oxygen/metabolism , Oxygen Consumption/physiology , Rats , Rats, Sprague-Dawley , Thyroid Hormones/metabolism
9.
Elife ; 112022 02 15.
Article in English | MEDLINE | ID: mdl-35164902

ABSTRACT

Background: Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to the impaired responses to hypoxia due to the inhibition of hypoxia-inducible factor-1 (HIF-1) by hyperglycemia. Methods: The ROS levels were analyzed in the blood of healthy subjects and individuals with type 1 diabetes after exposure to hypoxia. The relation between HIF-1, glucose levels, ROS production and its functional consequences were analyzed in renal mIMCD-3 cells and in kidneys of mouse models of diabetes. Results: Exposure to hypoxia increased circulating ROS in subjects with diabetes, but not in subjects without diabetes. High glucose concentrations repressed HIF-1 both in hypoxic cells and in kidneys of animals with diabetes, through a HIF prolyl-hydroxylase (PHD)-dependent mechanism. The impaired HIF-1 signaling contributed to excess production of mitochondrial ROS through increased mitochondrial respiration that was mediated by Pyruvate dehydrogenase kinase 1 (PDK1). The restoration of HIF-1 function attenuated ROS overproduction despite persistent hyperglycemia, and conferred protection against apoptosis and renal injury in diabetes. Conclusions: We conclude that the repression of HIF-1 plays a central role in mitochondrial ROS overproduction in diabetes and is a potential therapeutic target for diabetic complications. These findings are timely since the first PHD inhibitor that can activate HIF-1 has been newly approved for clinical use. Funding: This work was supported by grants from the Swedish Research Council, Stockholm County Research Council, Stockholm Regional Research Foundation, Bert von Kantzows Foundation, Swedish Society of Medicine, Kung Gustaf V:s och Drottning Victorias Frimurarestifelse, Karolinska Institute's Research Foundations, Strategic Research Programme in Diabetes, and Erling-Persson Family Foundation for S-B.C.; grants from the Swedish Research Council and Swedish Heart and Lung Foundation for T.A.S.; and ERC consolidator grant for M.M.


Subject(s)
Diabetes Mellitus/genetics , Hypoxia-Inducible Factor 1/antagonists & inhibitors , Hypoxia-Inducible Factor 1/genetics , Hypoxia , Mitochondria/metabolism , Reactive Oxygen Species/blood , Reactive Oxygen Species/metabolism , Adult , Animals , Cell Line , Diabetes Complications , Diabetes Mellitus/blood , Female , Humans , Hyperglycemia/genetics , Kidney/pathology , Male , Mice , Signal Transduction , Young Adult
10.
Clin Sci (Lond) ; 135(19): 2243-2263, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34569605

ABSTRACT

The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of non-obese diabetic (NOD) mice with imatinib resulted in increased beta-cell AMP-activated kinase (AMPK) phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against islet amyloid polypeptide (IAPP)-aggregation, thioredoxin interacting protein (TXNIP) up-regulation and beta-cell death. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme enoyl coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1). In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and acyl-CoA carboxylase (ACC) phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP down-regulation, which in turn protects against beta-cell death.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus/drug therapy , Energy Metabolism/drug effects , Hypoglycemic Agents/pharmacology , Imatinib Mesylate/pharmacology , Insulin-Secreting Cells/drug effects , Mitochondria/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Carrier Proteins/metabolism , Cell Death/drug effects , Cell Line , Cell Respiration/drug effects , Diabetes Mellitus/enzymology , Diabetes Mellitus/pathology , Disease Models, Animal , Enoyl-CoA Hydratase/metabolism , Enzyme Activation , Humans , Insulin-Secreting Cells/enzymology , Insulin-Secreting Cells/pathology , Islet Amyloid Polypeptide/metabolism , Male , Mice, Inbred NOD , Mitochondria/enzymology , Mitochondria/pathology , Phosphorylation , Rats, Sprague-Dawley , Ribosomal Protein S6/metabolism
11.
Acta Physiol (Oxf) ; 233(1): e13668, 2021 09.
Article in English | MEDLINE | ID: mdl-33900001

ABSTRACT

AIM: Hypoxia-inducible factors (HIFs) are O2 -sensitive transcription factors that regulate multiple biological processes which are essential for cellular adaptation to hypoxia. Small molecule inhibitors of HIF-prolyl hydroxylase domain (PHD) dioxygenases (HIF-PHIs) activate HIF-dependent transcriptional programs and have broad clinical potential. HIF-PHIs are currently in global late-stage clinical development for the treatment of anaemia associated with chronic kidney disease. Although the effects of hypoxia on renal haemodynamics and function have been studied in animal models and in humans living at high altitude, the effects of pharmacological HIF activation on renal haemodynamics, O2 metabolism and metabolic efficiency are not well understood. METHODS: Using a cross-sectional study design, we investigated renal haemodynamics, O2 metabolism, gene expression and NO production in healthy rats treated with different doses of HIF-PHIs roxadustat or molidustat compared to vehicle control. RESULTS: Systemic administration of roxadustat or molidustat resulted in a dose-dependent reduction in renovascular resistance (RVR). This was associated with increased glomerular filtration rate (GFR), urine flow and tubular sodium transport rate (TNa ). Although both total O2 delivery and TNa were increased, more O2 was extracted per transported sodium in rats treated with high-doses of HIF-PHIs, suggesting a reduction in metabolic efficiency. Changes in RVR and GFR were associated with increased nitric oxide (NO) generation and substantially suppressed by pharmacological inhibition of NO synthesis. CONCLUSIONS: Our data provide mechanistic insights into dose-dependent effects of short-term pharmacological HIF activation on renal haemodynamics, glomerular filtration and O2 metabolism and identify NO as a major mediator of these effects.


Subject(s)
Biological Phenomena , Renal Insufficiency, Chronic , Animals , Cross-Sectional Studies , Hypoxia-Inducible Factor-Proline Dioxygenases , Nitric Oxide , Prolyl Hydroxylases , Rats
12.
Am J Physiol Renal Physiol ; 319(6): F966-F978, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33073586

ABSTRACT

Circadian regulation of kidney function is involved in maintaining whole body homeostasis, and dysfunctional circadian rhythm can potentially be involved in disease development. Magnetic resonance imaging (MRI) provides reliable and reproducible repetitive estimates of kidney function noninvasively without the risk of adverse events associated with contrast agents and ionizing radiation. The purpose of this study was to estimate circadian variations in kidney function in healthy human subjects with MRI and to relate the findings to urinary excretions of electrolytes and markers of kidney function. Phase-contrast imaging, arterial spin labeling, and blood oxygen level-dependent transverse relaxation rate (R2*) mapping were used to assess total renal blood flow and regional perfusion as well as intrarenal oxygenation in eight female and eight male healthy volunteers every fourth hour during a 24-h period. Parallel with MRI scans, standard urinary and plasma parameters were quantified. Significant circadian variations of total renal blood flow were found over 24 h, with increasing flow from noon to midnight and decreasing flow during the night. In contrast, no circadian variation in intrarenal oxygenation was detected. Urinary excretions of electrolytes, osmotically active particles, creatinine, and urea all displayed circadian variations, peaking during the afternoon and evening hours. In conclusion, total renal blood flow and kidney function, as estimated from excretion of electrolytes and waste products, display profound circadian variations, whereas intrarenal oxygenation displays significantly less circadian variation.


Subject(s)
Circadian Rhythm/physiology , Kidney/physiology , Magnetic Resonance Imaging , Renal Circulation/physiology , Adult , Electrolytes/metabolism , Female , Healthy Volunteers , Humans , Male , Oxygen Consumption/physiology , Sex Factors , Young Adult
13.
Am J Physiol Renal Physiol ; 319(6): F1067-F1072, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33044869

ABSTRACT

Acute kidney injury (AKI) is a significant clinical problem associated with poor outcome. The kidney, due to its inhomogeneous blood flow, is particularly susceptible to changes in oxygen delivery, and intrarenal hypoxia is a hallmark of AKI and progression to chronic kidney disease. However, the role of intrarenal hypoxia per se in the recovery from an ischemic insult is presently unclear. The present study was designed to investigate 1) the role of systemic hypoxia in the acute progression and recovery of AKI and 2) whether increased intrarenal oxygenation improves recovery from an ischemic insult. Anesthetized male Sprague-Dawley rats were subjected to unilateral warm renal ischemia for 45 min followed by 2 h of reperfusion under systemic hypoxia (10% inspired oxygen), normoxia (21% inspired oxygen), or hyperoxia (60% inspired oxygen). Intrarenal oxygen tension was successfully manipulated by altering the inspired oxygen. Glomerular filtration rate (GFR) before the ischemic insult was independent of intrarenal oxygen tension. GFR during the recovery from the ischemic insult was significantly lower compared with baseline in all groups (3 ± 1%, 13 ± 1%, and 30 ± 11% of baseline for hypoxia, normoxia, and hyperoxia, respectively). However, GFR was significantly higher in hyperoxia than hypoxia (P < 0.05, hypoxia vs. hyperoxia). During recovery, renal blood flow was only reduced in hyperoxia, as a consequence of increased renal vascular resistance. In conclusion, the present study demonstrates that renal function during the recovery from an ischemic insult is dependent on intrarenal oxygen availability, and normobaric hyperoxia treatment has the potential to protect kidney function.


Subject(s)
Acute Kidney Injury/therapy , Glomerular Filtration Rate , Hypoxia/therapy , Kidney/metabolism , Oxygen Inhalation Therapy , Oxygen/metabolism , Reperfusion Injury/therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Cell Hypoxia , Disease Models, Animal , Hypoxia/metabolism , Hypoxia/pathology , Hypoxia/physiopathology , Kidney/pathology , Kidney/physiopathology , Male , Rats, Sprague-Dawley , Recovery of Function , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Time Factors
14.
J Physiol ; 598(23): 5573-5587, 2020 12.
Article in English | MEDLINE | ID: mdl-32857872

ABSTRACT

KEY POINTS: Reducing Na+ intake reduces the partial pressure of oxygen in the renal cortex and activates the renin-angiotensin-aldosterone system. In the absence of high blood pressure, these consequences of dietary Na+ reduction may be detrimental for the kidney. In a normotensive animal experimental model, reducing Na+ intake for 2 weeks increased renal oxygen consumption, which was normalized by mineralocorticoid receptor blockade. Furthermore, blockade of the angiotensin II AT1 receptor restored cortical partial pressure of oxygen by improving oxygen delivery. This shows that increased activity of the renin-angiotensin-aldosterone system contributes to increased oxygen metabolism in the kidney after 2 weeks of a low Na+ diet. The results provide insights into dietary Na+ restriction in the absence of high blood pressure, and its consequences for the kidney. ABSTRACT: Reduced Na+ intake reduces the PO2 (partial pressure of oxygen) in the renal cortex. Upon reduced Na+ intake, reabsorption along the nephron is adjusted with activation of the renin-angiotensin-aldosterone system (RAAS). Thus, we studied the effect of reduced Na+ intake on renal oxygen homeostasis and function in rats, and the impact of intrarenal angiotensin II AT1 receptor blockade using candesartan and mineralocorticoid receptor blockade using canrenoic acid potassium salt (CAP). Male Sprague-Dawley rats were fed standard rat chow containing normal (0.25%) and low (0.025%) Na+ for 2 weeks. The animals were anaesthetized (thiobutabarbital 120 mg kg-1 ) and surgically prepared for kidney oxygen metabolism and function studies before and after acute intrarenal arterial infusion of candesartan (4.2 µg kg-1 ) or intravenous infusion of CAP (20 mg kg-1 ). Baseline mean arterial pressure and renal blood flow were similar in both dietary groups. Fractional Na+ excretion and cortical oxygen tension were lower and renal oxygen consumption was higher in low Na+ groups. Neither candesartan nor CAP affected arterial pressure. Renal blood flow and cortical oxygen tension increased in both groups after candesartan in the low Na+ group. Fractional Na+ excretion was increased and oxygen consumption reduced in the low Na+ group after CAP. These results suggest that blockade of angiotensin II AT1 receptors has a major impact upon oxygen delivery during normal and low Na+ conditions, while aldosterone receptors mainly affect oxygen metabolism following 2 weeks of a low Na+ diet.


Subject(s)
Angiotensin II , Receptors, Mineralocorticoid , Aldosterone/metabolism , Angiotensin II/metabolism , Animals , Blood Pressure , Diet , Kidney/metabolism , Male , Oxygen/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System
16.
Am J Physiol Renal Physiol ; 318(1): F248-F259, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31790302

ABSTRACT

Oxygen tension in the kidney is mostly determined by O2 consumption (Qo2), which is, in turn, closely linked to tubular Na+ reabsorption. The objective of the present study was to develop a model of mitochondrial function in the proximal tubule (PT) cells of the rat renal cortex to gain more insight into the coupling between Qo2, ATP formation (GATP), ATP hydrolysis (QATP), and Na+ transport in the PT. The present model correctly predicts in vitro and in vivo measurements of Qo2, GATP, and ATP and Pi concentrations in PT cells. Our simulations suggest that O2 levels are not rate limiting in the proximal convoluted tubule, absent large metabolic perturbations. The model predicts that the rate of ATP hydrolysis and cytoplasmic pH each substantially regulate the GATP-to-Qo2 ratio, a key determinant of the number of Na+ moles actively reabsorbed per mole of O2 consumed. An isolated increase in QATP or in cytoplasmic pH raises the GATP-to-Qo2 ratio. Thus, variations in Na+ reabsorption and pH along the PT may, per se, generate axial heterogeneities in the efficiency of mitochondrial metabolism and Na+ transport. Our results also indicate that the GATP-to-Qo2 ratio is strongly impacted not only by H+ leak permeability, which reflects mitochondrial uncoupling, but also by K+ leak pathways. Simulations suggest that the negative impact of increased uncoupling in the diabetic kidney on mitochondrial metabolic efficiency is partly counterbalanced by increased rates of Na+ transport and ATP consumption. This model provides a framework to investigate the role of mitochondrial dysfunction in acute and chronic renal diseases.


Subject(s)
Adenosine Triphosphate/biosynthesis , Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , Mitochondria/metabolism , Models, Biological , Oxygen Consumption/physiology , Animals , Kidney Cortex/metabolism , Rats , Sodium/metabolism
17.
PLoS One ; 14(8): e0220185, 2019.
Article in English | MEDLINE | ID: mdl-31465457

ABSTRACT

Ischemia reperfusion (IR) injury can cause acute kidney injury. It has previously been reported that kidney oxygen consumption (QO2) in relation to glomerular filtration rate (GFR), and thus tubular sodium load, is markedly increased following IR injury, indicating reduced electrolyte transport efficiency. Since proximal tubular sodium reabsorption (TNa) is a major contributor to overall kidney QO2, we investigated whether inhibition of proximal tubular sodium transport through carbonic anhydrase (CA) inhibition would improve renal oxygenation following ischemia reperfusion. Anesthetized adult male Sprague Dawley rats were administered the CA inhibitor acetazolamide (50 mg/kg bolus iv), or volume-matched vehicle, and kidney function, hemodynamics and QO2 were estimated before and after 45 minutes of unilateral complete warm renal ischemia. CA inhibition per se reduced GFR (-20%) and TNa (-22%), while it increased urine flow and urinary sodium excretion (36-fold). Renal blood flow was reduced (-31%) due to increased renal vascular resistance (+37%) without affecting QO2. IR per se resulted in similar decrease in GFR and TNa, independently of CA activity. However, the QO2/TNa ratio following ischemia-reperfusion was profoundly increased in the group receiving CA inhibition, indicating a significant contribution of basal oxygen metabolism to the total kidney QO2 following inhibition of proximal tubular function after IR injury. Ischemia increased urinary excretion of kidney injury molecule-1, an effect that was unaffected by CA. In conclusion, this study demonstrates that CA inhibition further impairs renal oxygenation and does not protect tubular function in the acute phase following IR injury. Furthermore, these results indicate a major role of the proximal tubule in the acute recovery from an ischemic insult.


Subject(s)
Carbonic Anhydrases/metabolism , Kidney/injuries , Kidney/physiopathology , Recovery of Function , Reperfusion Injury/enzymology , Reperfusion Injury/physiopathology , Animals , Kidney/metabolism , Kidney/pathology , Kidney Tubules, Proximal/pathology , Male , Oxygen/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
18.
Tomography ; 5(2): 239-247, 2019 06.
Article in English | MEDLINE | ID: mdl-31245545

ABSTRACT

Intrarenal hypoxia develops within a few days after the onset of insulinopenic diabetes in an experimental animal model (ie, a model of type-1 diabetes). Although diabetes-induced hypoxia results in increased renal lactate formation, mitochondrial function is well maintained, a condition commonly referred to as pseudohypoxia. However, the metabolic effects of significantly elevated lactate levels remain unclear. We therefore investigated in diabetic animals the response to acute intrarenal hypoxia in the presence of high renal lactate formation to delineate mechanistic pathways and compare these findings to healthy control animals. Hyperpolarized 13C-MRI and blood oxygenation level-dependent 1H-MRI was used to investigate the renal metabolism of [1-13C]pyruvate and oxygenation following acutely altered oxygen content in the breathing gas in a streptozotocin rat model of type-1 diabetes with and without insulin treatment and compared with healthy control rats. The lactate signal in the diabetic kidney was reduced by 12%-16% during hypoxia in diabetic rats irrespective of insulin supplementation. In contrast, healthy controls displayed the well-known Pasteur effect manifested as a 10% increased lactate signal following reduction of oxygen in the inspired air. Reduced expression of the monocarboxyl transporter-4 may account for altered response to hypoxia in diabetes with a high intrarenal pyruvate-to-lactate conversion. Reduced intrarenal lactate formation in response to hypoxia in diabetes shows the existence of a different metabolic phenotype, which is independent of insulin, as insulin supplementation was unable to affect the pyruvate-to-lactate conversion in the diabetic kidney.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Hypoxia/pathology , Kidney/diagnostic imaging , Kidney/metabolism , Lactic Acid/metabolism , Magnetic Resonance Imaging/methods , Acute Disease , Animals , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Female , Kidney/pathology , Rats , Rats, Wistar
19.
Anal Bioanal Chem ; 411(13): 2809-2816, 2019 May.
Article in English | MEDLINE | ID: mdl-30895347

ABSTRACT

Diabetic kidney disease is a serious complication of diabetes that can ultimately lead to end-stage renal disease. The pathogenesis of diabetic kidney disease is complex, and fundamental research is still required to provide a better understanding of the driving forces behind it. We report regional metabolic aberrations from an untargeted mass spectrometry imaging study of kidney tissue using an insulinopenic rat model of diabetes. Diabetes was induced by intravenous injection of streptozotocin, and kidneys were harvested 2 weeks thereafter. Imaging was performed using nanospray desorption electrospray ionization connected to a high-mass-resolving mass spectrometer. No histopathological changes were observed in the kidney sections; however, mass spectrometry imaging revealed a significant increase in several 18-carbon unsaturated non-esterified fatty acid species and monoacylglycerols. Notably, these 18-carbon acyl chains were also constituents of several increased diacylglycerol species. In addition, a number of short- and long-chain acylcarnitines were found to be accumulated while several amino acids were depleted. This study presents unique regional metabolic data indicating a dysregulated energy metabolism in renal mitochondria as an early response to streptozotocin-induced type I diabetes. Graphical abstract.


Subject(s)
Amino Acids, Branched-Chain/analysis , Carnitine/analogs & derivatives , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/pathology , Kidney/pathology , Lipids/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Carnitine/analysis , Diglycerides/analysis , Fatty Acids/analysis , Kidney/chemistry , Male , Monoglycerides/analysis , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
20.
Acta Physiol (Oxf) ; 226(1): e13254, 2019 05.
Article in English | MEDLINE | ID: mdl-30635985

ABSTRACT

AIM: Common kidney alterations early after the onset of insulinopenic diabetes include glomerular hyperfiltration, increased oxygen consumption and tissue hypoxia. Increased activity of the renin-angiotensin-aldosterone system (RAAS) has been implicated in most of these early alterations. The RAAS peptide angiotensin (1-7) has the potential to modulate RAAS-mediated alterations in kidney function. Thus, the aim of the present study was to determine the acute effects of angiotensin (1-7) in the kidney of insulinopenic type 1 diabetic rat and the results compared to that of normoglycaemic controls. METHODS: Renal haemodynamics and oxygen homeostasis were measured 3 weeks after administration of streptozotocin before and after acute intrarenal infusion of angiotensin (1-7) at a dose of 400 ng min-1 . RESULTS: Arterial pressure and renal blood flow were similar between groups and not affected by exogenous angiotensin (1-7). Diabetics presented with glomerular hyperfiltration, increased urinary sodium excretion and elevated kidney oxygen consumption. Angiotensin (1-7) infusion normalized glomerular filtration, increased urinary sodium excretion, decreased proximal tubular reabsorption, and elevated kidney oxygen consumption even further. The latter resulting in tubular electrolyte transport inefficiency. Angiotensin (1-7) did not affect tissue oxygen tension and had no significant effects in controls on any of the measured parameters. CONCLUSION: Diabetes results in increased responsiveness to elevated levels of angiotensin (1-7) which is manifested as inhibition of tubular sodium transport and normalization of glomerular filtration. Furthermore, elevated angiotensin (1-7) levels increase kidney oxygen consumption in the diabetic kidney even further which affects tubular electrolyte transport efficiency negatively.


Subject(s)
Angiotensin I/pharmacology , Diabetic Nephropathies/drug therapy , Kidney/metabolism , Oxygen Consumption/drug effects , Peptide Fragments/pharmacology , Animals , Diabetes Mellitus, Experimental/complications , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...