Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitology ; 151(3): 300-308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38212980

ABSTRACT

A 30 years long data series on the infection dynamics of European eel (Anguilla anguilla L.) with the non-native invasive nematode Anguillicola crassus Kuwahara, Niimi & Hagaki, 1974 is presented. Parasite burden was evaluated for 30 years in inland and coastal waters in Mecklenburg-Western Pomerania from 1991 to 2020. The total prevalence, mean intensity and damage status of the swim bladders were very high during the first decade (1991­2000), and significantly decreased in both marine and freshwater eel populations in the following decades (2001­2010, 2011­2020). The parasite intensity of eels in coastal waters was significantly lower compared with the freshwater systems (61.3% vs 79.5% in the first decade), indicating the vulnerability of the parasites to brackish water conditions and the fact that the life cycle of A. crassus cannot be completed under high saline conditions. Eel caught in the western part of the Baltic Sea (west of Darss sill) had the lowest mean infection (51.8% in first decade) compared to the eastern part with 63.8%. Thus, besides different infection patterns caused by the environmental conditions, a temporal trend towards a reduced parasite intensity and a more balanced parasite­host relationship developed in the 30 years of interaction after the first invasion. Possible reasons and mechanisms for the observed trends in parasite­host interactions are discussed.


Subject(s)
Anguilla , Dracunculoidea , Fish Diseases , Animals , Anguilla/parasitology , Air Sacs/parasitology , Life Cycle Stages , Germany/epidemiology , Fish Diseases/epidemiology , Fish Diseases/parasitology
2.
Int J Parasitol Parasites Wildl ; 19: 211-221, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36339899

ABSTRACT

With the opening of the Suez Canal as a link between the Red Sea and the Mediterranean Sea in 1869, the biogeographical event of the Lessepsian migration has been starting. Aided by beneficial conditions in the new habitat, almost 500 marine species have immigrated and often established themselves in the Mediterranean Sea, including several pufferfish species, with all of them extending their range and becoming important components of the local fauna. The parasitic fauna of these pufferfish has scarcely been examined in the Mediterranean Sea or in their native range, which provides the opportunity to study host-parasite interaction in a new habitat. The present study describes the parasitic fauna in four alien invasive pufferfish species (Lagocephalus guentheri, L. sceleratus, L. suezensis, and Torquigener flavimaculosus) of various sizes and ages on the Israeli Mediterranean coast. The parasite fauna of these species was diverse (Maculifer dayawanensis Digenea; Calliterarhynchus gracilis, Nybelinia africana and Tetraphyllidea larvae Cestoda; Hysterothylacium reliquens, Hysterothylacium sp. and Raphidascaris sp. Nematoda; Trachellobdella lubrica Hirudinea and Caligus fugu and Taeniacanthus lagocephali Copepoda) and consisted of mostly generalist species, most likely acquired in the new habitat, and specialist copepod ectoparasites, having co-invaded with the pufferfish. Additionally, the oioxenic opecoelid digenean Maculifer dayawanensis was found in two pufferfish species. The genus was previously only known from the Indo-Pacific Ocean, representing the eighth reported case of a Lessepsian endoparasite so far. Our results suggest a change in parasite fauna to native Mediterranean species in the pufferfish like previously reported in other Lessepsian migrant predatory fish species and a wider spread of co-invasion of fish endoparasites to the Mediterranean Sea than previously assumed. The study also provides several new host records and the first report for parasites in T. flavimaculosus.

3.
Acta Parasitol ; 66(2): 543-552, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33315180

ABSTRACT

PURPOSE: Fish parasites can cause diseases in humans and lead to commercial losses in fisheries and aquaculture. The objectives of this study were to analyze E. ongus's parasite fauna regarding food safety and parasite transmission risk between Epinephelus species and test whether E.ongus populations can be distinguished by their parasite community. METHODS: We studied the metazoan parasite fauna of 30 white-streaked groupers Epinephelus ongus from the Thousand Islands, Java Sea, Indonesia, and compared the parasite community with specimens from Karimunjawa archipelago, Java Sea, from a former study. We used common fish parasitological methods for fish examination and parasite calculations. RESULTS: We found 12 metazoan parasite species, establishing five new host and five new locality records, increasing the known parasite fauna of E. ongus by 21%. No anisakid worms infected E. ongus. All but one (trematode Gyliauchen cf. nahaensis) species have been previously reported from Epinephelus. Parasite abundance of E. ongus differed significantly between the two regions. CONCLUSIONS: Due to a certain degree of host specificity to groupers, there is potential risk of parasite transmission from E. ongus into groupers in mariculture or surrounding fishes, which increases (sea) food security related health risks from zoonotic parasites and calls for better monitoring and management plans for E. ongus. The regional separation of the Thousand Islands and Karimunjawa with different food availability and fish ecology causes different parasite abundances, distinguishing two separate E. ongus populations by their parasite fauna.


Subject(s)
Bass , Fish Diseases , Parasites , Trematoda , Animals , Fish Diseases/epidemiology , Humans , Indonesia/epidemiology , Islands
4.
Acta Parasitol ; 66(1): 26-33, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32642980

ABSTRACT

PURPOSE: Endoparasitic nematodes of six harbour porpoises Phocoena phocoena and four grey seals Halichoerus grypus, stranded at the eastern coast of the Baltic Sea in Germany in winter 2019, were analysed in order to identify nematode parasites and to compare with recent studies from the same area. METHODS: Endoparasitic nematodes were identified by using both morphological and molecular characters. The successfully obtained sequences of the rDNA marker regions ITS-1, 5.8S, ITS-2 from 29 anisakid and the rDNA marker region ITS-2 of 11 pseudalid nematodes were amplified. RESULTS: Analyses revealed the presence of three parasite species, the anisakid nematode Contracaecum osculatum from grey seals and the pseudalid nematodes Pseudalius inflexus and Stenurus minor from the harbour porpoises. Other anisakid nematodes regularly occurring in the Baltic Sea, e.g. Anisakis simplex or Pseudoterranova decipiens, were not found. CONCLUSIONS: The prevalence of 100% and a severe parasite load in grey seals demonstrated a very high C. osculatum infection of Baltic Sea fish as their regular prey. Prevalence of 33% for parasites in harbour porpoises and minor infection rates, combined with a distinct lack of anisakid nematodes, are typical for the current situation of the porpoise parasite fauna in the Baltic Sea. Invasive parasite species as possible indicators for climate change could not be detected.


Subject(s)
Anisakis , Ascaridoidea , Parasites , Phocoena , Seals, Earless , Animals , Ascaridoidea/genetics
5.
Acta Parasitol ; 59(3): 518-28, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25119368

ABSTRACT

Zoographical distribution of metazoan fish parasites in herring, Clupea harengus, from the Baltic Sea was analysed in order to use them as potential biological indicators. A total of 210 herring from six different sampling sites were investigated, harbouring 12 different parasite species [five digeneans (D), one cestode (C), three nematodes (N) and three acanthocephalans (A)]. The distribution of the parasite species differed according to region, with a distinct gradient of decreasing species richness towards the east of the Baltic Sea. The western localities at Kiel Bay, Rügen and Poland had the highest parasite diversity, including the marine parasite species Anisakis simplex (s.s.) (N), Brachyphallus crenatus and Hemiurus luehei (both D). The eastern localities had low parasite species richness, predominated by the freshwater digenean Diplostomum spathaceum. We could identify three different Baltic herring stocks, the spring-spawning herring of the western Baltic reaching from the Kattegat to the German and Polish coast, the stock of the central Baltic proper and the northern stock of C. harengus var. membras of the Gulf of Finland. The limited distribution of the herring parasites within the Baltic Sea enables their use as biological indicators for migration patterns and stock separation. The acanthocephalan Pomphorhynchus laevis that has already been used as an accumulation bioindicator for heavy metals was only recorded for the western herring stocks. However, the presence of mainly generalistic parasites and their uneven distribution patterns make their use as indicators for regional environmental and global change more difficult.


Subject(s)
Acanthocephala/isolation & purification , Cestoda/isolation & purification , Fish Diseases/parasitology , Fishes/parasitology , Nematoda/isolation & purification , Trematoda/isolation & purification , Acanthocephala/classification , Acanthocephala/genetics , Animals , Baltic States , Biodiversity , Cestoda/classification , Cestoda/genetics , Finland , Geography , Germany , Nematoda/classification , Nematoda/genetics , Oceans and Seas , Parasitic Diseases, Animal , Poland , Population Dynamics , Seasons , Trematoda/classification , Trematoda/genetics
6.
Dis Aquat Organ ; 74(3): 225-33, 2007 Mar 13.
Article in English | MEDLINE | ID: mdl-17465307

ABSTRACT

Fifty specimens each of bream Abramis brama and roach Rutilus rutilus were examined for metazoan parasite fauna and trichodinid ciliates; 25 specimens of each species were collected from the Kiel Canal, a man-made waterway, and a nearby freshwater lake, the Dieksee. This is the first detailed parasitological examination of A. brama and R. rutilus at these locations: 30 parasite species were found, comprising 4 protozoans, 4 myxozoans, 5 digeneans, 3 monogeneans, 2 cestodes, 6 nematodes, 2 acanthocephalans, 3 crustaceans and 1 hirudinean. The crustacean Caligus lacustris occurred in both habitats while 2 other crustacean species, 2 acanthocephalans and 1 hirudinean were recorded exclusively for the lake habitat. Larval as well as adult stages of the different parasite species were found, indicating that both fish species act as intermediate and final hosts in both habitats. The Kiel Canal (total of 17 parasite species) showed a lower parasite species richness for A. brama and R. rutilus (14 and 10 parasite species, respectively) than the lake (25 parasite species). A. brama had a higher parasite richness (22 species) than R. rutilus (16 species) in the lake habitat. Most parasites collected were of freshwater origin. Consequently, the observed infection pattern of both fish species in the waterway is mainly influenced by the limited salinity tolerance of freshwater parasites, which are negatively affected even by a salinity of 2.3 to 4.5. In the central Kiel Canal, neither fish species was infected with marine parasites of low host specifity. These parasites are either limited by the low salinity at this sampling site (<4.5 to 6.0) or they cannot enter the canal due to the environmental conditions prevailing in this artificial brackish water habitat. Thus, the canal may comprise a natural barrier preventing the distribution of North Sea parasites into the Baltic Sea. However, the brackish water Baltic Sea nematodes Paracuaria adunca and Cosmocephalus obvelatus were found in R. rutilus from the canal, demonstrating the ability of some parasite species to invade and extend their range of distribution through this man-made shipping route from the Baltic to the North Sea.


Subject(s)
Cyprinidae/parasitology , Fish Diseases/parasitology , Parasites/classification , Parasitic Diseases, Animal/parasitology , Animals , Ecosystem , Fish Diseases/epidemiology , Fish Diseases/transmission , Fresh Water , Germany/epidemiology , Host-Parasite Interactions , Parasites/isolation & purification , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/transmission , Population Density , Prevalence , Rivers , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...