Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Med Phys ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38314904

ABSTRACT

BACKGROUND: In radiopharmaceutical therapies (RPT) involving beta emitters, absorbed dose (Dabs ) calculations often employ the use of dose voxel kernels (DVK). Such methods are faster and easier to implement than Monte Carlo (MC) simulations. Using DVK methods implies a non-stochastic distribution of particles. This is a valid assumption for betas where thousands to tens of thousands of particles traversing the cell nucleus are required to achieve cell kill. However, alpha particles have linear energy transfers (LET) that are ∼500 times higher than LETs of betas. This results in a significant probability of killing a cell from even a single traversal through its nucleus. Consequently, the activity used for therapy involving alphas is very low, and the use of DVKs for estimating Dabs will generate results that may be erroneous. PURPOSE: This work aims at illustrating how use of DVKs affect the resulting Dabs in small tumors when irradiated with clinically relevant amounts of beta- and alpha-emitters. The results are compared with those from using a Monte Carlo method where the energy deposition from individual tracks is simulated. METHODS: To illustrate the issues associated with DVK for alpha radiopharmaceutical therapies at the microscale, a tumor cluster model was used to compare beta (177 Lu) and alphas (211 At, 225 Ac, and 227 Th) irradiations. We used 103 beta particles and 20 alpha particles per cell, which is within the range of the required number of particle traversals through its nucleus to sterilize a cell. Results from using both methods were presented with Dabs histograms, dose volume histograms, and Dabs error maps. RESULTS: For beta-emitter (177 Lu) irradiating the modeled tumor cluster, resulting Dabs was similar for both DVK and MC methods. For all alpha emitters, the use of DVK led to an overestimation of Dabs when compared to results generated using a MC approach. CONCLUSIONS: Our results demonstrate that the use of DVK methods for alpha emitters can lead to an overestimation in the calculated Dabs . The use of DVKs for therapies involving alpha emitters may therefore not be appropriate when only referring to the mean Dabs metric.

2.
Cancer Biother Radiopharm ; 39(1): 75-81, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38265676

ABSTRACT

Background: Real-time quantification of radioligand binding to cells under in vivo-like conditions improves evaluation of clinical potential. Materials and Methods: SKOV-3 tumor cells were grown in a monolayer on a thin glass plate placed in a sealable shallow chamber with a continuous flow of 125I-trastuzumab solution. The time-dependent cell binding was measured using a NaI detector, and the binding parameters were derived by computational analysis. Results: The detection efficiency of 125I was 65 cps/kBq for radioligand bound to the cells. Experiments were analyzed to find the values of kon and koff. The resulting kon was 3.2-7.9 × 104 M-1 s-1 and koff was 0.11-4.2 × 10-5 s-1. Conclusions: Radioligands can be rapidly evaluated by binding to living cells for selection and optimization of radioconjugates for diagnostic and therapeutic purposes.

3.
J Nucl Med ; 64(1): 165-172, 2023 01.
Article in English | MEDLINE | ID: mdl-35798559

ABSTRACT

Intraperitoneal 211At-based targeted α-therapy (TAT) may hold great promise as an adjuvant therapy after surgery and chemotherapy in epithelial ovarian cancer to eradicate any remaining undetectable disease. This implies that it will also be delivered to patients possibly already cured by the primary treatment. An estimate of long-term risks is therefore sought to determine whether the treatment is justified. Methods: Baseline data for risk estimates of α-particle irradiation were collected from published studies on excess cancer induction and mortality for subjects exposed to either 224Ra treatments or Thorotrast contrast agent (25% ThO2 colloid, containing 232Th). Organ dosimetry for 224Ra and Thorotrast irradiation were taken from the literature. These organ-specific risks were then applied to our previously reported dosimetry for intraperitoneal 211At-TAT patients. Results: Risk could be estimated for 10 different organ or organ groups. The calculated excess relative risk per gray (ERR/Gy) could be sorted into 2 groups. The lower-ERR/Gy group, ranging up to a value of approximately 5, included trachea, bronchus, and lung, at 0.52 (95% CI, 0.21-0.82); stomach, at 1.4 (95% CI, -5.0-7.9); lymphoid and hematopoietic system, at 2.17 (95% CI, 1.7-2.7); bone and articular cartilage, at 2.6 (95% CI, 2.0-3.3); breast, at 3.45 (95% CI, -10-17); and colon, at 4.5 (95% CI, -3.5-13). The higher-ERR/Gy group, ranging from approximately 10 to 15, included urinary bladder, at 10.1 (95% CI, 1.4-23); liver, at 14.2 (95% CI, 13-16); kidney, at 14.9 (95% CI, 3.9-26); and lip, oral cavity, and pharynx, at 15.20 (95% CI, 2.73-27.63). Applying a typical candidate patient (female, age 65 y) and correcting for the reference population mortality rate, the total estimated excess mortality for an intraperitoneal 211At-monoclonal antibody treatment amounted to 1.13 per 100 treated. More than half this excess originated from urinary bladder and kidney, 0.29 and 0.34, respectively. Depending on various adjustments in calculation and assumptions on competing risks, excess mortality could range from 0.11 to 1.84 per 100 treated. Conclusion: Published epidemiologic data on lifelong detriment after α-particle irradiation and its dosimetry allowed calculations to estimate the risk for secondary cancer after 211At-based intraperitoneal TAT. Measures to reduce dose to the urinary organs may further decrease the estimated relative low risk for secondary cancer from 211At-monoclonal antibody-based intraperitoneal TAT.


Subject(s)
Neoplasms, Second Primary , Ovarian Neoplasms , Thorium Dioxide , Humans , Female , Aged , Radioimmunotherapy/adverse effects , Risk Factors , Antibodies, Monoclonal
4.
EJNMMI Phys ; 9(1): 67, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36178531

ABSTRACT

BACKGROUND: The aim of this study is to elucidate the difference in absorbed dose (Dabs) patterns in radiopharmaceutical therapies between alpha emitters (225Ac) and beta emitters (177Lu) when targeting cancer-associated fibroblasts (CAF) or tumor cells. Five spherical models with 3 mm diameter were created, representing spherical tumor masses that contain tumor clusters, interspersed with CAFs. The mean distance from a tumor cell to the nearest CAF (Lmean) varied throughout these models from 92 to 1030 µm. Dabs calculations were performed while selecting either CAFs or tumor cells as sources, with Convolution/Superposition with 177Lu and Monte Carlo simulations (GATE) with 225Ac. Analyses were conducted with Dose Volume Histograms and efficacy ratios (ER), which represents the ratio of mean Dabs that is deposited in the target volume. RESULTS: 225Ac is the most optimal radionuclide when CAFs are both targeted and irradiating themselves, as ERs increase from 1.5 to 3.7 when Lmean increases from 92 to 1030 µm. With 177Lu, these numbers vary from 1.2 to 2.7. Conversely, when CAFs are sources and tumors are targets with 225Ac, ERs decreased from 0.8 to 0.1 when Lmean increases from 92 to 1030 µm. With 177Lu, these numbers vary from 0.9 to 0.3 CONCLUSION: When targeting CAFs to irradiate tumors, the efficacy of using 225Ac decreases as the average size of the tumor clusters (or Lmean) increases. In such situations, 177Lu will be more effective than 225Ac when targeting CAFs due to the longer beta particle range.

5.
Front Med (Lausanne) ; 9: 1076210, 2022.
Article in English | MEDLINE | ID: mdl-36687417

ABSTRACT

Astatine-211 (211At) has physical properties that make it one of the top candidates for use as a radiation source for alpha particle-based radionuclide therapy, also referred to as targeted alpha therapy (TAT). Here, we summarize the main results of the completed clinical trials, further describe ongoing trials, and discuss future prospects.

6.
Transl Oncol ; 14(1): 100873, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32987283

ABSTRACT

INTRODUCTION: Antibodies labeled with alpha-emitter astatine-211 have previously shown effective in intraperitoneal (i.p.) treatments of ovarian cancer. In the present work we explore the use of investigational farletuzumab, aimed at the folate receptor alpha. The aim was to evaluate the biodistribution and therapeutic effect of 211At-farletuzumab in in-vitro and in-vivo experiments and, using models for radiation dosimetry, to translate the findings to expected clinical result. The activity concentration used for therapy in mice (170 kBq/mL) was chosen to be in agreement with an activity concentration that is anticipated to be clinically relevant in patients (200 MBq/L). METHODS: For biodistribution, using intravenous injections and mice carrying subcutaneous (s.c.) tumors, the animals were administered either 211At-farletuzumab (n = 16); or with a combination of 125I-farletuzumab and 211At-MX35 (n = 12). At 1, 3, 10 and 22 h, mice were euthanized and s.c.-tumors and organs weighted and measured for radioactivity. To evaluate therapeutic efficacy, mice were inoculated i.p. with 2 × 106 NIH:OVCAR-3 cells. Twelve days later, the treatments were initiated by i.p.-administration. Specific treatment was given by 211At-labeled farletuzumab (group A; n = 22, 170 kBq/mL) which is specific for OVCAR-3 cells. Control treatments were given by either 211At-labeled rituximab which is unspecific for OVCAR-3 (group B; n = 22, 170 kBq/mL), non-radiolabeled farletuzumab (group C; n = 11) or PBS only (group D; n = 8). RESULTS: The biodistribution of 211At-farletuzumab was similar to that with 125I as radiolabel, and also to that of 211At-labeled MX35 antibody. The tumor-free fraction (TFF) of the three control groups were all low (PBS 12%, unlabeled specific farletuzumab 9% and unspecific 211At-rituximab 14%). TFF following treatment with 211At-farletuzumab was 91%. CONCLUSION: The current investigation of intraperitoneal therapy with 211At-farletuzumab, delivered at clinically relevant 211At-mAb radioactivity concentrations and specific activities, showed a 6 to 10-fold increase (treated versus controls) in antitumor efficacy. This observation warrants further clinical testing.

7.
Cancer Biother Radiopharm ; 35(6): 425-436, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32077749

ABSTRACT

Despite the consensus around the clinical potential of the α-emitting radionuclide astatine-211 (211At), there are only a limited number of research facilities that work with this nuclide. There are three main reasons for this: (1) Scarce availability of the nuclide. Despite a relatively large number of globally existing cyclotrons capable of producing 211At, few cyclotron facilities produce the nuclide on a regular basis. (2) Lack of a chemical infrastructure, that is, isolation of 211At from irradiated targets and the subsequent synthesis of an astatinated product. At present, the research groups that work with 211At depend on custom systems for recovering 211At from the irradiated targets. Setting up and implementing such custom units require long lead times to provide a proper working system. (3) The chemistry of 211At. Compared with radiometals there are no well-established and generally accepted synthesis methods for forming sufficiently stable bonds between 211At and the tumor-specific vector to allow for systemic applications. Herein we present an overview of the infrastructure of producing 211At radiopharmaceuticals, from target to radiolabeled product including chemical strategies to overcome hurdles for advancement into clinical trials with 211At.


Subject(s)
Astatine/chemistry , Cyclotrons , Neoplasms/radiotherapy , Radiation Oncology/instrumentation , Radiopharmaceuticals/chemistry , Alpha Particles/therapeutic use , Astatine/isolation & purification , Astatine/therapeutic use , Clinical Trials as Topic , Humans , Radiation Oncology/methods , Radiopharmaceuticals/isolation & purification , Radiopharmaceuticals/therapeutic use
8.
EJNMMI Res ; 10(1): 10, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32048062

ABSTRACT

PURPOSE: Targeted alpha therapy (TAT) is a promising treatment for micrometastatic and minimal residual cancer. We evaluated systemic α-radioimmunotherapy (α-RIT) of metastatic castration-resistant prostate cancer (mCRPC) using the α-particle emitter 211At-labeled to the anti-PSCA A11 minibody. A11 is specific for prostate stem cell antigen (PSCA), a cell surface glycoprotein which is overexpressed in more than 90% of both localized prostate cancer and bone metastases. METHODS: PC3-PSCA cells were implanted subcutaneously (s.c.) and intratibially (i.t) in nude mice. Efficacy of α-RIT (two fractions-14-day interval) was studied on s.c. macrotumors (0, 1.5 and 1.9 MBq) and on i.t. microtumors (~100-200 µm; 0, 0.8 or 1.5 MBq) by tumor-volume measurements. The injected activities for therapies were estimated from separate biodistribution and myelotoxicity studies. RESULTS: Tumor targeting of 211At-A11 was efficient and the effect on s.c. macrotumors was strong and dose-dependent. At 6 weeks, the mean tumor volumes for the treated groups, compared with controls, were reduced by approximately 85%. The separate myelotoxicity study following one single fraction showed reduced white blood cells (WBC) for all treated groups on day 6 after treatment. For the 0.8 and 1.5 MBq, the WBC reductions were transient and followed by recovery at day 13. For 2.4 MBq, a clear toxicity was observed and the mice were sacrificed on day 7. In the long-term follow-up of the 0.8 and 1.5 MBq-groups, blood counts on day 252 were normal and no signs of radiotoxicity observed. Efficacy on i.t. microtumors was evaluated in two experiments. In experiment 1, the tumor-free fraction (TFF) was 95% for both treated groups and significantly different (p < 0.05) from the controls at a TFF of 66%). In experiment 2, the difference in TFF was smaller, 32% for the treated group versus 20% for the controls. However, the difference in microtumor volume in experiment 2 was highly significant, 0.010 ± 0.003 mm3 versus 3.79 ± 1.24 mm3 (treated versus controls, respectively), i.e., a 99.7% reduction (p < 0.001). The different outcome in experiment 1 and 2 is most likely due to differences in microtumor sizes at therapy, or higher tumor-take in experiment 2 (where more cells were implanted). CONCLUSION: Evaluating fractionated α-RIT with 211At-labeled anti-PSCA A11 minibody, we found clear growth inhibition on both macrotumors and intratibial microtumors. For mice treated with multiple fractions, we also observed radiotoxicity manifested by progressive loss in body weight at 30 to 90 days after treatment. Our findings are conceptually promising for a systemic TAT of mCRPC and warrant further investigations of 211At-labeled PSCA-directed vectors. Such studies should include methods to improve the therapeutic window, e.g., by implementing a pretargeted regimen of α-RIT or by altering the size of the targeting vector.

9.
Sci Rep ; 9(1): 15900, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685874

ABSTRACT

Targeted alpha therapy of disseminated cancer is an emerging technique where astatine-211 is one of the most promising candidate nuclides. Although astatine has been known for over 70 years, its chemistry is still largely unexplored, mainly due to the lack of stable or long-lived isotopes. However, substantial amounts of astatine-211 can be produced in cyclotrons by the bombardment of natural bismuth. The astatine can be recovered from the resulting irradiated target material through either wet extraction or dry-distillation. Chloroform has become an important intermediate solvent for the recovery of astatine after production, especially following dry distillation. In this work, the radiochemistry of astatine in chloroform was investigated using evaporation, solvent extraction, chromatographic methods and molecular modeling. The extraction of astatine in chloroform led to the formation of multiple astatine species, allowing for evaporation of the solvent to dryness without any loss of activity. Radiolysis products of chloroform were shown to play an important role in the speciation of astatine forming both reactive and kinetically stable compounds. It was hypothesized that reactions with chlorine, as well as trichloromethyl hydroperoxide, forming polar astatine compounds are important reactions under the current experimental conditions.

10.
Mol Pharm ; 16(8): 3524-3533, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31268724

ABSTRACT

The use of nanobodies (Nbs) as vehicles in targeted alpha therapy (TAT) has gained great interest because of their excellent properties. They combine high in vivo affinity and specificity of binding with fast kinetics. This research investigates a novel targeted therapy that combines the α-particle emitter astatine-211 (211At) and the anti-HER2 Nb 2Rs15d to selectively target HER2+ cancer cells. Two distinctive radiochemical methodologies are investigated using three different coupling reagents. The first method uses the coupling reagents, N-succinimidyl 4-(1,2-bis-tert-butoxycarbonyl)guanidinomethyl-3-(trimethylstannyl)benzoate (Boc2-SGMTB) and N-succinimidyl-3-(trimethylstannyl)benzoate (m-MeATE), which are both directed to amino groups on the Nb, resulting in random conjugation. The second method aims at obtaining a homogeneous tracer population, via a site-specific conjugation of the N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide (MSB) reagent onto the carboxyl-terminal cysteine of the Nb. The resulting radioconjugates are evaluated in vitro and in vivo. 2Rs15d is labeled with 211At using Boc2-SGMTB, m-MeATE, and MSB. After astatination and purification, the binding specificity of the radioconjugates is validated on HER2+ cells, followed by an in vivo biodistribution assessment in SKOV-3 xenografted mice. α-camera imaging is performed to determine uptake and activity distribution in kidneys/tumors. 2Rs15d astatination resulted in a high radiochemical purity >95% for all radioconjugates. The biodistribution studies of all radioconjugates revealed comparable tumor uptake (higher than 8% ID/g at 1 h). [211At]SAGMB-2Rs15d showed minor uptake in normal tissues. Only in the kidneys, a higher uptake was measured after 1 h, but decreased rapidly after 3 h. Astatinated Nbs consisting of m-MeATE or MSB reagents revealed elevated uptake in lungs and stomach, indicating the presence of released 211At. α-Camera imaging of tumors revealed a homogeneous activity distribution. The radioactivity in the kidneys was initially concentrated in the renal cortex, while after 3 h most radioactivity was measured in the medulla, confirming the fast washout into urine. Changing the reagents for Nb astatination resulted in different in vivo biodistribution profiles, while keeping the targeting moiety identical. Boc2-SGMTB is the preferred reagent for Nb astatination because of its high tumor uptake, its low background signals, and its fast renal excretion. We envision [211At]SAGMB-2Rs15d to be a promising therapeutic agent for TAT and aim toward efficacy evaluation.


Subject(s)
Astatine/administration & dosage , Immunoconjugates/administration & dosage , Ovarian Neoplasms/radiotherapy , Receptor, ErbB-2/antagonists & inhibitors , Single-Domain Antibodies/administration & dosage , Alpha Particles/therapeutic use , Animals , Astatine/chemistry , Astatine/pharmacokinetics , Benzoates/chemistry , Cell Line, Tumor , Drug Liberation , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/pharmacokinetics , Mice , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/pathology , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Tissue Distribution , Trimethyltin Compounds/chemistry , Xenograft Model Antitumor Assays
11.
J Nucl Med ; 60(8): 1073-1079, 2019 08.
Article in English | MEDLINE | ID: mdl-30683761

ABSTRACT

Eliminating microscopic residual disease with α-particle radiation is theoretically appealing. After extensive preclinical work with α-particle-emitting 211At, we performed a phase I trial with intraperitoneal α-particle therapy in epithelial ovarian cancer using 211At conjugated to MX35, the antigen-binding fragments-F(ab')2-of a mouse monoclonal antibody. We now present clinical outcome data and toxicity in a long-term follow-up with individual absorbed dose estimations. Methods: Twelve patients with relapsed epithelial ovarian cancer, achieving a second complete or nearly complete response with chemotherapy, received intraperitoneal treatment with escalating (20-215 MBq/L) activity concentrations of 211At-MX35 F(ab')2.Results: The activity concentration was escalated to 215 MBq/L without any dose-limiting toxicities. Most toxicities were low-grade and likely related to the treatment procedure, not clearly linked to the α-particle irradiation, with no observed hematologic toxicity. One grade 3 fatigue and 1 grade 4 intestinal perforation during catheter implantation were observed. Four patients had a survival of more than 6 y, one of whom did not relapse. At progression, chemotherapy was given without signs of reduced tolerability. Overall median survival was 35 mo, with a 1-, 2-, 5-, and 10-y survival of 100%, 83%, 50%, and 25%, respectively. Calculations of the absorbed doses showed that a lower specific activity is associated with a lower single-cell dose, whereas a high specific activity may result in a lower central dose in microtumors. Individual differences in absorbed dose to possible microtumors were due to variations in administered activity and the specific activity. Conclusion: No apparent signs of radiation-induced toxicity or decreased tolerance to relapse therapy were observed. The dosimetric calculations show that further optimization is advisable to increase the efficacy and reduce possible long-term toxicity.


Subject(s)
Astatine , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/radiotherapy , Neoplasm Recurrence, Local , Ovarian Neoplasms/immunology , Ovarian Neoplasms/radiotherapy , Radioimmunotherapy/methods , Adult , Aged , Alpha Particles , Animals , Antibodies, Monoclonal/chemistry , Carcinoma, Ovarian Epithelial/mortality , Catheters , Disease Progression , Female , Follow-Up Studies , Humans , Immunoglobulin Fab Fragments , Infusions, Parenteral , Maximum Tolerated Dose , Mice , Middle Aged , Neoplasm, Residual , Ovarian Neoplasms/mortality , Radiation Dosage , Radiometry , Recurrence , Reproducibility of Results , Treatment Outcome
12.
Crit Rev Oncol Hematol ; 126: 6-12, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29759568

ABSTRACT

To improve the accuracy of chemoradiation therapy in anal cancer patients PET/CT is frequently used in the planning of radiation therapy. A systematic review was performed to assess impact on survival, quality of life, symptom score, change in target definition and treatment intention. Systematic literature searches were conducted in Medline, EMBASE, the Cochrane Library, and Centre for Reviews and Dissemination. Ten cross-sectional studies were identified. No data were available on survival or quality of life. The summary estimate of the proportion of patients in which PET/CT had an impact on the target definition, was 23% (95% CI 16;33). The corresponding summary estimate of a change in treatment intent from curative to palliative was 3% (95% CI 2;6). Almost one in four patients had a change in target definition, which supports the use of PET/CT in radiation therapy planning, but the consequence regarding survival and quality of life is still uncertain.


Subject(s)
Anus Neoplasms/diagnosis , Anus Neoplasms/radiotherapy , Positron Emission Tomography Computed Tomography , Radiotherapy Planning, Computer-Assisted/methods , Chemoradiotherapy , Cross-Sectional Studies , Fluorodeoxyglucose F18 , Humans , Quality of Life , Radiopharmaceuticals
13.
J Nucl Med ; 59(4): 646-651, 2018 04.
Article in English | MEDLINE | ID: mdl-29175984

ABSTRACT

Intraperitoneally administered radiolabeled monoclonal antibodies (mAbs) have been tested in several clinical trials, often with promising results, but have never proven curative. Methods: We have previously presented simulations of clinically relevant amounts of intraperitoneal 90Y-mAbs for treatment of minimal disease and shown that such treatments are unlikely to eradicate microtumors. Our previous model simulated the kinetics of intraperitoneally infused radiolabeled mAbs in humans and showed the benefit of instead using α-emitters such as 211At. In the current work, we introduce penetration of mAbs into microtumors with radii of up to 400 µm. Calculations were performed using dynamic simulation software. To determine the radiation dose distribution in nonvascularized microtumors of various sizes after intraperitoneal 211At-radioimmunotherapy, we used an in-house-developed Monte Carlo program for microdosimetry. Our aim was to find methods that optimize the therapy for as wide a tumor size range as possible. Results: Our results show that high-specific-activity radiolabeled mAbs that are bound to a tumor surface will penetrate slowly compared with the half-lives of 211At and shorter-lived radionuclides. The inner-core cells of tumors with radii exceeding 100 µm may therefore not be sufficiently irradiated. For lower specific activities, the penetration rate and dose distribution will be more favorable for such tumors, but the dose to smaller microtumors and single cells will be low. Conclusion: Our calculations show that the addition of a boost with unlabeled mAb 1-5 h after therapy results in sufficient absorbed doses both to single cells and throughout microtumors up to approximately 300 µm in radius. This finding should also hold for other high-affinity mAbs and short-lived α-emitters.


Subject(s)
Alpha Particles/therapeutic use , Antibodies, Monoclonal/immunology , Neoplasms/radiotherapy , Peritoneum , Radiation Dosage , Radioimmunotherapy/methods , Tumor Burden/radiation effects , Astatine/therapeutic use , Humans , Models, Biological , Neoplasms/immunology , Neoplasms/pathology , Radiotherapy Dosage , Tumor Burden/immunology
14.
EJNMMI Res ; 7(1): 38, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28439844

ABSTRACT

BACKGROUND: The aim of this study was to compare the therapeutic efficacy of two different activity levels of the 213Bi-labeled monoclonal antibody MX35 in an ovarian cancer model. Sixty female BALB/c (nu/nu) mice were inoculated intraperitoneally with human ovarian cancer cells (OVCAR-3). Two weeks later, 40 mice were injected intraperitoneal (i.p.) with 1 ml of 213Bi-MX35, 3 MBq/mL (n = 20), or 9 MBq/mL (n = 20). An additional 20 mice received unlabeled MX35. Incidence of tumors and ascites was investigated 8 weeks after therapy. Body weight and white blood cell counts were monitored after treatment for possible signs of toxicity. RESULTS: The tumor-free fraction of the animals treated with 3 MBq/mL of 213Bi-MX35 was 0.55, whereas that of animals treated with 9 MBq/mL of 213Bi-MX35 was 0.78. The control group treated with unlabeled MX35 had a tumor-free fraction of 0.15. No significant reduction in white blood cell counts or weight loss was observed. CONCLUSIONS: Tumor growth after i.p. treatment with 213Bi-MX35 was significantly reduced compared to treatment with unlabeled MX35. Treatment with 9 MBq/mL of 213Bi-MX35 resulted in higher tumor-free fraction compared with 3 MBq/mL of 213Bi-MX35, but this difference was not statistically significant. No signs of toxicity were observed in the treated animals.

15.
J Nucl Med ; 58(4): 598-604, 2017 04.
Article in English | MEDLINE | ID: mdl-27688477

ABSTRACT

The goal of this study was to investigate whether targeted α-therapy can be used to successfully treat macrotumors, in addition to its established role for treating micrometastatic and minimal disease. We used an intravenous fractionated regimen of α-radioimmunotherapy in a subcutaneous tumor model in mice. We aimed to evaluate the absorbed dose levels required for tumor eradication and growth monitoring, as well as to evaluate long-term survival after treatment. Methods: Mice bearing subcutaneous tumors (50 mm3, NIH:OVCAR-3) were injected repeatedly (1-3 intravenous injections 7-10 d apart, allowing bone marrow recovery) with 211At-MX35-F(ab')2 at different activities (close to acute myelotoxicity). Mean absorbed doses to tumors and organs were estimated from biodistribution data and summed for the fractions. Tumor growth was monitored for 100 d and survival for 1 y after treatment. Toxicity analysis included body weight, white blood cell count, and hematocrit. Results: Effects on tumor growth after fractionated α-radioimmunotherapy with 211At-MX35-F(ab')2 was strong and dose-dependent. Complete remission (tumor-free fraction, 100%) was found for tumor doses of 12.4 and 16.4 Gy. The administered activities were high, and long-term toxicity effects (≤60 wk) were clear. Above 1 MBq, the median survival decreased linearly with injected activity, from 44 to 11 wk. Toxicity was also seen by reduced body weight. White blood cell count analysis after α-radioimmunotherapy indicated bone marrow recovery for the low-activity groups, whereas for high-activity groups the reduction was close to acute myelotoxicity. A decrease in hematocrit was seen at a late interval (34-59 wk after therapy). The main external indication of poor health was dehydration. Conclusion: Having observed complete eradication of solid tumor xenografts, we conclude that targeted α-therapy regimens may stretch beyond the realm of micrometastatic disease and be eradicative also for macrotumors. Our observations indicate that at least 10 Gy are required. This agrees well with the calculated tumor control probability. Considering a relative biological effectiveness of 5, this dose level seems reasonable. However, complete remission was achieved first at activity levels close to lethal and was accompanied by biologic effects that reduced long-term survival.


Subject(s)
Alpha Particles/therapeutic use , Antibodies, Monoclonal/therapeutic use , Astatine/therapeutic use , Cell Transformation, Neoplastic , Ovarian Neoplasms/radiotherapy , Radiation Dosage , Radioimmunotherapy/methods , Animals , Antibodies, Monoclonal/pharmacokinetics , Body Weight/radiation effects , Cell Line, Tumor , Cell Proliferation/radiation effects , Female , Humans , Mice , Mice, Nude , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Radiometry , Survival Analysis , Time Factors , Tissue Distribution
16.
J Nucl Med ; 57(4): 594-600, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26769860

ABSTRACT

UNLABELLED: A biokinetic model was constructed to evaluate and optimize various intraperitoneal radioimmunotherapies for micrometastatic tumors. The model was used to calculate the absorbed dose to both anticipated microtumors and critical healthy organs and demonstrated how intraperitoneal targeted radiotherapy can be optimized to maximize the ratio between them. METHODS: The various transport mechanisms responsible for the biokinetics of intraperitoneally infused radiolabeled monoclonal antibodies (mAbs) were modeled using a software package. Data from the literature were complemented by pharmacokinetic data derived from our clinical phase I study to set parameter values. Results using the ß-emitters (188)Re, (177)Lu, and (90)Y and the α-emitters (211)At, (213)Bi, and (212)Pb were compared. The effects of improving the specific activity, prolonging residence time by introducing an osmotic agent, and varying the activity concentration of the infused agent were investigated. RESULTS: According to the model, a 1.7-L infused saline volume will decrease by 0.3 mL/min because of lymphatic drainage and by 0.7 mL/min because of the transcapillary convective component. The addition of an osmotic agent serves to lower the radiation dose to the bone marrow. Clinically relevant radioactivity concentrations of α- and ß-emitters bound to mAbs were compared. For α-emitters, microtumors receive high doses (>20 Gy or 100 Sv [relative biological effect = 5]). Since most of the tumor dose originates from cell-bound radionuclides, an increase in the specific activity would further increase the tumor dose without affecting the dose to peritoneal fluid or bone marrow. For ß-emitters, tumors will receive almost entirely nonspecific irradiation. The dose from cell-bound radiolabeled mAbs will be negligible by comparison. For the long-lived (90)Y, tumor doses are expected to be low at the maximum activity concentration delivered in clinical studies. CONCLUSION: According to the presented model, α-emitters are needed to achieve radiation doses high enough to eradicate microscopic tumors.


Subject(s)
Ovarian Neoplasms/therapy , Radioimmunotherapy/methods , Radiopharmaceuticals/pharmacokinetics , Alpha Particles , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Beta Particles , Bone Marrow/radiation effects , Capillaries/metabolism , Drainage , Female , Humans , Injections, Intraperitoneal , Kinetics , Lymphatic System/metabolism , Models, Statistical , Ovarian Neoplasms/metabolism , Radiopharmaceuticals/administration & dosage
17.
Bioconjug Chem ; 27(3): 688-97, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26791409

ABSTRACT

Effective treatment of metastasis is a great challenge in the treatment of different types of cancers. Targeted alpha therapy utilizes the short tissue range (50-100 µm) of α particles, making the method suitable for treatment of disseminated occult cancers in the form of microtumors or even single cancer cells. A promising radioactive nuclide for this type of therapy is astatine-211. Astatine-211 attached to tumor-specific antibodies as carrier molecules is a system currently under investigation for use in targeted alpha therapy. In the common radiolabeling procedure, astatine is coupled to the antibody arbitrarily on lysine residues. By instead coupling astatine to disulfide bridges in the antibody structure, the immunoreactivity of the antibody conjugates could possibly be increased. Here, the disulfide-based conjugation was performed using a new coupling reagent, maleimidoethyl 3-(trimethylstannyl)benzamide (MSB), and evaluated for chemical stability in vitro. The immunoconjugates were subsequently astatinated, resulting in both high radiochemical yield and high specific activity. The MSB-conjugate was shown to be stable with a long shelf life prior to the astatination. In a comparison of the in vivo distribution of the new immunoconjugate with other tin-based immunoconjugates in tumor-bearing mice, the MSB conjugation method was found to be a viable option for successful astatine labeling of different monoclonal antibodies.


Subject(s)
Astatine/chemistry , Benzamides/chemistry , Immunoconjugates/chemistry , Animals , Mice , Mice, Inbred BALB C
18.
Int J Radiat Oncol Biol Phys ; 93(3): 569-76, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26460999

ABSTRACT

PURPOSE: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence, intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective dose associated with i.p. administration of (211)At-MX35 F(ab')2. METHODS AND MATERIALS: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of (211)At-MX35 F(ab')2. Potassium perchlorate was given to block unwanted accumulation of (211)At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical biodistribution data combined with clinical blood activity data allowed us to estimate absorbed doses in additional tissues. The equivalent dose was calculated using an RBE of 5 and the effective dose using the recommended weight factor of 20. All doses were normalized to the initial activity concentration of the infused therapy solution. RESULTS: The urinary bladder, thyroid, and kidneys (1.9, 1.8, and 1.7 mGy per MBq/L) received the 3 highest estimated absorbed doses. When the tissue-weighting factors were applied, the largest contributors to the effective dose were the lungs, stomach, and urinary bladder. Using 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. CONCLUSION: Intraperitoneal (211)At-MX35 F(ab')2 treatment is potentially a well-tolerated therapy for locally confined microscopic ovarian cancer. Absorbed doses to normal organs are low, but because the effective dose potentially corresponds to a risk of treatment-induced carcinogenesis, optimization may still be valuable.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Astatine/pharmacokinetics , Immunoconjugates/pharmacokinetics , Immunoglobulin Fab Fragments/metabolism , Ovarian Neoplasms/radiotherapy , Peritoneal Neoplasms/radiotherapy , Radioimmunotherapy/methods , Alpha Particles/therapeutic use , Electrons/therapeutic use , Female , Gastric Mucosa/metabolism , Humans , Kidney/diagnostic imaging , Kidney/metabolism , Lung/diagnostic imaging , Lung/metabolism , Neoplasm Recurrence, Local , Neoplasm, Residual , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/secondary , Proton Therapy , Radiotherapy Dosage , Relative Biological Effectiveness , Risk Assessment , Stomach/diagnostic imaging , Thyroid Gland/diagnostic imaging , Thyroid Gland/metabolism , Tissue Distribution , Tomography, Emission-Computed, Single-Photon/methods , Urinary Bladder/diagnostic imaging , Urinary Bladder/metabolism
19.
Sci Rep ; 5: 12025, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26169786

ABSTRACT

To facilitate multicentre clinical studies on targeted alpha therapy, it is necessary to develop an automated, on-site procedure for conjugating rare, short-lived, alpha-emitting radionuclides to biomolecules. Astatine-211 is one of the few alpha-emitting nuclides with appropriate chemical and physical properties for use in targeted therapies for cancer. Due to the very short range of the emitted α-particles, this therapy is particularly suited to treating occult, disseminated cancers. Astatine is not intrinsically tumour-specific; therefore, it requires an appropriate tumour-specific targeting vector, which can guide the radiation to the cancer cells. Consequently, an appropriate method is required for coupling the nuclide to the vector. To increase the availability of astatine-211 radiopharmaceuticals for targeted alpha therapy, their production should be automated. Here, we present a method that combines dry distillation of astatine-211 and a synthesis module for producing radiopharmaceuticals into a process platform. This platform will standardize production of astatinated radiopharmaceuticals, and hence, it will facilitate large clinical studies focused on this promising, but chemically challenging, alpha-emitting radionuclide. In this work, we describe the process platform, and we demonstrate the production of both astaine-211, for preclinical use, and astatine-211 labelled antibodies.


Subject(s)
Astatine/chemistry , Clinical Trials as Topic , Multicenter Studies as Topic , Radiopharmaceuticals/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Automation, Laboratory , Distillation/methods , Humans , Isotope Labeling , Neoplasms/drug therapy , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/therapeutic use
20.
PLoS One ; 10(5): e0126298, 2015.
Article in English | MEDLINE | ID: mdl-25970341

ABSTRACT

The aim of this preclinical study was to evaluate the characteristics of the monoclonal antibody Rebmab200, which is a humanized version of the ovarian-specific murine antibody MX35. This investigation contributes to the foundation for future clinical α-radioimmunotherapy of minimal residual ovarian cancer with 211At-Rebmab200. Here, the biodistribution of 211At-Rebmab200 was evaluated, as was the utility of 99mTc-Rebmab200 for bioimaging. Rebmab200 was directly compared with its murine counterpart MX35 in terms of its in-vitro capacity for binding the immobilized NaPi2B epitope and live cells; we also assessed its biodistribution in nude mice carrying subcutaneous OVCAR-3 tumors. Tumor antigen and cell binding were similar between Rebmab200 and murine MX35, as was biodistribution, including normal tissue uptake and in-vivo tumor binding. We also demonstrated that 99mTc-Rebmab200 can be used for single-photon emission computed tomography of subcutaneous ovarian carcinomas in tumor-bearing mice. Taken together, our data support the further development of Rebmab200 for radioimmunotherapy and diagnostics.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal/pharmacokinetics , Antigens, Neoplasm/metabolism , Antineoplastic Agents/pharmacokinetics , Carcinoma/diagnostic imaging , Ovarian Neoplasms/diagnostic imaging , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibody Affinity , Antibody Specificity , Antigens, Neoplasm/genetics , Antineoplastic Agents/pharmacology , Astatine/chemistry , Carcinoma/genetics , Carcinoma/immunology , Carcinoma/therapy , Cell Line, Tumor , Female , Gene Expression , Humans , Mice , Mice, Nude , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , Radioimmunotherapy , Radiopharmaceuticals/chemistry , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism , Technetium/chemistry , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...