Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Radiother Oncol ; 124(1): 124-129, 2017 07.
Article in English | MEDLINE | ID: mdl-28645692

ABSTRACT

PURPOSE: To report the clinical implementation of a novel external beam radiotherapy technique for accelerated partial breast irradiation treatments based on combined electron and photon modulated beams radiotherapy (MERT+IMRT) with conventional MLC. MATERIALS AND METHODS: A group of patients was selected to test the viability of the technique. The prescribed dose was 38.5Gy, following a hypofractionated schema, and the structures were defined following the NSABP-B39/RTOG-0413 protocol. The plans were calculated with an in-house Monte Carlo based planning system to consider explicitly the particle interactions with the MLC. An ad-hoc breast phantom was designed for a specific QA protocol. A reduced SSD was used for electron beams. Toxicity and cosmetic effects were assessed at every follow-up visit. RESULTS: All the plans achieved the dosimetric objectives and fulfilled the specific quality assurance protocol. Treatment delivery did not entail additional drawbacks for the clinical routine. Moderate or severe grade of toxicity was not reported, and the cosmetic results were comparable to those obtained with other APBI techniques. CONCLUSIONS: Results showed that MERT+IMRT with the MLC is a feasible and secure technique, and easy to be extended to other centers with the implementation of the adequate software for planning.


Subject(s)
Breast Neoplasms/radiotherapy , Electrons/therapeutic use , Photons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Aged , Female , Humans , Middle Aged , Phantoms, Imaging , Radiometry/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
2.
Radiother Oncol ; 119(1): 154-8, 2016 04.
Article in English | MEDLINE | ID: mdl-26898508

ABSTRACT

BACKGROUND AND PURPOSE: To assess the quality of very-high energy electron (VHEE) scanning pencil beam radiation therapy in relation to state-of-the-art volumetric modulated arc therapy (VMAT) and to determine the extent of its application. MATERIAL AND METHODS: We planned five clinical cases with VHEE scanning pencil beams of 100 and 120MeV, equally distributed in a coplanar arrangement around the patient. The clinical cases included acoustic neuroma, and liver, lung, esophagus, and anal cancer cases. We performed Monte Carlo (MC) dose calculations and we optimized the dose in a research version of RayStation. VHEE plan performance was compared against clinically delivered VMAT. RESULTS: With equal target coverage, mean doses to organs at risk (OARs) were on average 22% lower for the VHEE plans compared to the VMAT plans. Dose conformity was equal or superior compared to the VMAT plans and integral dose to the body was in average 14% (9-22%) lower for the VHEE plans. CONCLUSIONS: The dosimetric advantages of VHEE as demonstrated for a variety of clinical cases, combined with the theoretical ultra fast treatment delivery, afford VHEE scanning pencil beam radiotherapy a suitable and potentially superior alternative for cancer radiotherapy.


Subject(s)
Electrons/therapeutic use , Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, High-Energy/methods , Esophageal Neoplasms/radiotherapy , Humans , Liver Neoplasms/radiotherapy , Lung Neoplasms/radiotherapy , Monte Carlo Method , Neuroma, Acoustic/radiotherapy , Radiotherapy, Intensity-Modulated
3.
Med Phys ; 42(5): 2615-25, 2015 May.
Article in English | MEDLINE | ID: mdl-25979053

ABSTRACT

PURPOSE: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60-120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. METHODS: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a matlab graphical user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. RESULTS: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%-16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1-3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric plan, OAR doses were up to 70% lower and the integral dose was 33% lower for VHEE compared to 6 MV VMAT. Additionally, VHEE conformity indices (CI100 = 1.09 and CI50 = 4.07) were better than VMAT conformity indices (CI100 = 1.30 and CI50 = 6.81). The 100 MeV VHEE lung plan resulted in mean dose decrease to all OARs by up to 27% for the same target coverage compared to the clinical 6 MV flattening filter-free (FFF) VMAT plan. The 100 MeV prostate plan resulted in 3% mean dose increase to the penile bulb and the urethra, but all other OAR mean doses were lower compared to the 15 MV VMAT plan. The lung case CI100 and CI50 conformity indices were 3% and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. The prostate case CI100 and CI50 conformity indices were 1% higher and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. CONCLUSIONS: The authors have developed a treatment planning workflow for MC dose calculation of pencil beams and optimization for treatment planning of VHEE radiotherapy. The authors have demonstrated that VHEE plans resulted in similar or superior dose distributions for pediatric, lung, and prostate cases compared to clinical VMAT plans.


Subject(s)
Electrons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Brain Neoplasms/radiotherapy , Child , Computer Simulation , Humans , Lung Neoplasms/radiotherapy , Male , Monte Carlo Method , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , User-Computer Interface
4.
Med Phys ; 42(4): 1606-13, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25832051

ABSTRACT

PURPOSE: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. METHODS: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0-6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. RESULTS: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4-6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0-4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. CONCLUSIONS: The authors demonstrate that relative dose distributions for VHEE beams of 50-70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.


Subject(s)
Computer Simulation , Electrons , Film Dosimetry , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Polystyrenes , Uncertainty , Water
5.
Phys Med Biol ; 57(5): 1191-202, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22330241

ABSTRACT

The purpose of this study was to present a Monte-Carlo (MC)-based optimization procedure to improve conventional treatment plans for accelerated partial breast irradiation (APBI) using modulated electron beams alone or combined with modulated photon beams, to be delivered by a single collimation device, i.e. a photon multi-leaf collimator (xMLC) already installed in a standard hospital. Five left-sided breast cases were retrospectively planned using modulated photon and/or electron beams with an in-house treatment planning system (TPS), called CARMEN, and based on MC simulations. For comparison, the same cases were also planned by a PINNACLE TPS using conventional inverse intensity modulated radiation therapy (IMRT). Normal tissue complication probability for pericarditis, pneumonitis and breast fibrosis was calculated. CARMEN plans showed similar acceptable planning target volume (PTV) coverage as conventional IMRT plans with 90% of PTV volume covered by the prescribed dose (D(p)). Heart and ipsilateral lung receiving 5% D(p) and 15% D(p), respectively, was 3.2-3.6 times lower for CARMEN plans. Ipsilateral breast receiving 50% D(p) and 100% D(p) was an average of 1.4-1.7 times lower for CARMEN plans. Skin and whole body low-dose volume was also reduced. Modulated photon and/or electron beams planned by the CARMEN TPS improve APBI treatments by increasing normal tissue sparing maintaining the same PTV coverage achieved by other techniques. The use of the xMLC, already installed in the linac, to collimate photon and electron beams favors the clinical implementation of APBI with the highest efficiency.


Subject(s)
Breast Neoplasms/radiotherapy , Algorithms , Dose-Response Relationship, Radiation , Electrons , Female , Film Dosimetry/methods , Humans , Monte Carlo Method , Phantoms, Imaging , Photons , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Skin/radiation effects , Software
6.
Phys Med Biol ; 55(5): 1413-27, 2010 Mar 07.
Article in English | MEDLINE | ID: mdl-20150682

ABSTRACT

The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.


Subject(s)
Electrons/therapeutic use , Head and Neck Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Feasibility Studies , Head and Neck Neoplasms/pathology , Humans , Radiometry , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/instrumentation , Reproducibility of Results
7.
Radiother Oncol ; 93(3): 625-32, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19758721

ABSTRACT

BACKGROUND AND PURPOSE: To evaluate the feasibility of using a photon MLC (xMLC) for modulated electron radiotherapy treatment (MERT) as an alternative to conventional post-mastectomy chest wall (CW) irradiation. A Monte Carlo (MC) based planning system was developed to overcome the inaccuracy of the 'pencil beam' algorithm. MC techniques are known to accurately calculate the dose distributions of electron beams, allowing the explicit simulation of electron interactions within the MLC. MATERIALS AND METHODS: Four real clinical CW cases were planned using MERT which were compared with the conventional electron treatments based on blocks and by a straightforward approach using the MLC, and not the blocks (as an intermediate step to MERT) to shape the same segments with SSD between 60 and 70 cm depending on PTV size. MC calculations were verified with an array of ionization chambers and radiochromic films in a solid water phantom. RESULTS: Tests based on gamma analysis between MC dose distributions and radiochromic film measurements showed an excellent agreement. Differences in the absolute dose measured with a plane-parallel chamber at a reference point were below 3% for all cases. MERT solution showed a better PTV coverage and a significant reduction of the doses to the organs at risk (OARs). CONCLUSION: MERT can effectively improve the current electron treatments by obtaining a better PTV coverage and sparing healthy tissues. More directly, block-shaped treatments could be replaced by MLC-shaped non-modulated segments providing similar results.


Subject(s)
Breast Neoplasms/radiotherapy , Mastectomy , Radiotherapy Planning, Computer-Assisted/instrumentation , Thoracic Wall/radiation effects , Breast Neoplasms/surgery , Electrons , Female , Humans , Monte Carlo Method , Photons , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...