Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Sci Total Environ ; 912: 169564, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38142996

ABSTRACT

Urbanization stands out as a significant anthropogenic factor, exerting selective pressures on ecosystems and biotic components. A notable outcome of urbanization is thermal heterogeneity where the emergence of Urban Heat Islands is characterized by elevated air and surface temperatures compared to adjacent rural areas. Investigating the influence of thermal heterogeneity on urban animals could offer insights into how temperature variations can lead to phenotypic shifts. Urban pigeons (Columba livia) serve as an excellent model for studying urban thermal effects, given the melanism variations, which are associated with the pleiotropy of the melanocortin system. To examine the development of physiological plasticity in response to urban thermal variations, we conducted a study on pigeons in Santiago, Chile, during the rainy season. We assessed the influence of habitat on physiological traits related to metabolism and antioxidant capacities, which are theoretically affected by feather coloration. Our findings reveal that variations in melanism significantly impact pigeon physiology, affecting both antioxidant capacities and the mitochondrial activity of red blood cells. It was found that higher urban temperatures, from both the current sampling month and the prior sampling month (from CRU TS dataset), were negatively and strongly associated with lower antioxidant and metabolic activities. This suggests that elevated urban temperatures likely benefit the energetic budgets of pigeon populations and mitigate the negative effects of oxidative metabolism, with differential effects depending on feather colorations.


Subject(s)
Columbidae , Melanosis , Animals , Columbidae/physiology , Cities , Feathers , Antioxidants , Ecosystem , Hot Temperature , Oxidative Stress
2.
J Comp Physiol B ; 193(6): 677-688, 2023 12.
Article in English | MEDLINE | ID: mdl-37831173

ABSTRACT

Fetal metabolic programming produced by unfavorable prenatal nutritional conditions leads to the development of a disorder called "thrifty phenotype", which is associated with pathologies such as diabetes and obesity in adulthood. However, from an ecophysiological approach, few studies have addressed the development of thrifty phenotypes in terms of energy. This might represent an adaptive advantage against caloric deficiency conditions extending into adulthood. The objective of this study is to investigate the potential adaptive value of the thrifty phenotype expression through prenatal programming in a rodent model experiencing varying dietary conditions in different temporal contexts. To fill this gap, adult males of Mus musculus (BALB/C) from two maternal pregnancy groups were analyzed: control (ad libitum feeding) and caloric restriction from day 10 of gestation (70% restriction). Adult offspring of these groups were split further for two experiments: acute food deprivation and chronic caloric restriction at 60%. The acute food deprivation was performed for 24, 48 or 72 h while the caloric restriction regime was sustained for 20 days. For each experiment, morphological variables, such as body and organ mass, and gene expression related to lipid and carbohydrate metabolism from the liver and brain, were evaluated. In chronic caloric restriction, behavioral tests (open-field test and home-cage behavior) were performed. Our results indicate that under acute deprivation, the liver mass and triglyceride content remained unchanged in individuals subjected to prenatal restriction, in contrast to the reduction experienced by the control group. The latter is associated with the expression of the key genes involved in energy homeostasis (Pepck, Pparα/Pparγ), indicating a differential use of nutritional resources. In addition, thrifty animals, subjected to chronic caloric restriction, showed a severe reduction in locomotor and gluconeogenic activity, which is consistent with the regulatory role of Sirt1 and its downstream targets Mao and Pepck. Our results reveal that prenatal caloric restriction translates into a sparing metabolism in response to acute and chronic lack of food in adulthood.


Subject(s)
Caloric Restriction , Obesity , Mice , Pregnancy , Male , Female , Animals , Body Weight/physiology , Diet , Homeostasis
3.
Biol Res ; 56(1): 41, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37438828

ABSTRACT

BACKGROUND: Hyperbaric oxygen treatment (HBOT) has been reported to modulate the proliferation of neural and mesenchymal stem cell populations, but the molecular mechanisms underlying these effects are not completely understood. In this study, we aimed to assess HBOT somatic stem cell modulation by evaluating the role of the mTOR complex 1 (mTORC1), a key regulator of cell metabolism whose activity is modified depending on oxygen levels, as a potential mediator of HBOT in murine intestinal stem cells (ISCs). RESULTS: We discovered that acute HBOT synchronously increases the proliferation of ISCs without affecting the animal's oxidative metabolism through activation of the mTORC1/S6K1 axis. mTORC1 inhibition by rapamycin administration for 20 days also increases ISCs proliferation, generating a paradoxical response in mice intestines, and has been proposed to mimic a partial starvation state. Interestingly, the combination of HBOT and rapamycin does not have a synergic effect, possibly due to their differential impact on the mTORC1/S6K1 axis. CONCLUSIONS: HBOT can induce an increase in ISCs proliferation along with other cell populations within the crypt through mTORC1/S6K1 modulation without altering the oxidative metabolism of the animal's small intestine. These results shed light on the molecular mechanisms underlying HBOT therapeutic action, laying the groundwork for future studies.


Subject(s)
Hyperbaric Oxygenation , Signal Transduction , Stem Cells , Animals , Mice , Cell Proliferation , Intestines/cytology , Mechanistic Target of Rapamycin Complex 1 , Oxygen , Sirolimus/pharmacology , Stem Cells/drug effects
4.
Bioeng Transl Med ; 8(2): e10443, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36925706

ABSTRACT

Psoriasis vulgaris is an inflammatory disease characterized by distinctive skin lesions and dysregulated angiogenesis. Recent research uses stem cell secretion products (CM); a set of bioactive factors with therapeutic properties that regulate several cellular processes, including tissue repair and angiogenesis. The aim of this work was to evaluate the effect of CM of Wharton's gelatin MSC (hWJCM) in a treatment based on the bioactivation of a hyaluronic acid matrix (HA hWJCM) in a psoriasiform-like dermatitis (PD) mouse model. A preclinical study was conducted on PD mice. The effect of hWJCM, Clobetasol (Clob) gold standard, HA Ctrl, and HA hWJCM was tested topically evaluating severity of PD, mice weight as well as skin, liver, and spleen appearance. Treatment with either hWJCM, HA Ctrl or HA hWJCM, resulted in significant improvement of the PD phenotype. Moreover, treatment with HA hWJCM reduced the Psoriasis Area Severity Index (PASI), aberrant angiogenesis, and discomfort associated with the disease, leading to total recovery of body weight. We suggest that the topical application of HA hWJCM can be an effective noninvasive therapeutic solution for psoriasis, in addition to other skin diseases, laying the groundwork for future studies in human patients.

5.
Mol Psychiatry ; 28(2): 871-882, 2023 02.
Article in English | MEDLINE | ID: mdl-36280751

ABSTRACT

Molecular and functional abnormalities of astrocytes have been implicated in the etiology and pathogenesis of schizophrenia (SCZ). In this study, we examined the proteome, inflammatory responses, and secretome effects on vascularization of human induced pluripotent stem cell (hiPSC)-derived astrocytes from patients with SCZ. Proteomic analysis revealed alterations in proteins related to immune function and vascularization. Reduced expression of the nuclear factor kappa B (NF-κB) p65 subunit was observed in these astrocytes, with no incremental secretion of cytokines after tumor necrosis factor alpha (TNF-α) stimulation. Among inflammatory cytokines, secretion of interleukin (IL)-8 was particularly elevated in SCZ-patient-derived-astrocyte-conditioned medium (ASCZCM). In a chicken chorioallantoic membrane (CAM) assay, ASCZCM reduced the diameter of newly grown vessels. This effect could be mimicked with exogenous addition of IL-8. Taken together, our results suggest that SCZ astrocytes are immunologically dysfunctional and may consequently affect vascularization through secreted factors.


Subject(s)
Induced Pluripotent Stem Cells , Schizophrenia , Humans , Induced Pluripotent Stem Cells/metabolism , Astrocytes/metabolism , Proteomics , Schizophrenia/metabolism , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Phenotype
6.
Front Cell Dev Biol ; 10: 935360, 2022.
Article in English | MEDLINE | ID: mdl-36158199

ABSTRACT

Schizophrenia (SZ) is a severe mental disorder that arises from abnormal neurodevelopment, caused by genetic and environmental factors. SZ often involves distortions in reality perception and it is widely associated with alterations in brain connectivity. In the present work, we used Human Induced Pluripotent Stem Cells (hiPSCs)-derived neuronal cultures to study neural communicational dynamics during early development in SZ. We conducted gene and protein expression profiling, calcium imaging recordings, and applied a mathematical model to quantify the dynamism of functional connectivity (FC) in hiPSCs-derived neuronal networks. Along the neurodifferentiation process, SZ networks displayed altered gene expression of the glutamate receptor-related proteins HOMER1 and GRIN1 compared to healthy control (HC) networks, suggesting a possible tendency to develop hyperexcitability. Resting-state FC in neuronal networks derived from HC and SZ patients emerged as a dynamic phenomenon exhibiting connectivity configurations reoccurring in time (hub states). Compared to HC, SZ networks were less thorough in exploring different FC configurations, changed configurations less often, presented a reduced repertoire of hub states and spent longer uninterrupted time intervals in this less diverse universe of hubs. Our results suggest that alterations in the communicational dynamics of SZ emerging neuronal networks might contribute to the previously described brain FC anomalies in SZ patients, by compromising the ability of their neuronal networks for rapid and efficient reorganization through different activity patterns.

7.
Front Cell Dev Biol ; 10: 946706, 2022.
Article in English | MEDLINE | ID: mdl-36092733

ABSTRACT

Schizophrenia is a chronic debilitating mental disorder characterized by perturbations in thinking, perception, and behavior, along with brain connectivity deficiencies, neurotransmitter dysfunctions, and loss of gray brain matter. To date, schizophrenia has no cure and pharmacological treatments are only partially efficacious, with about 30% of patients describing little to no improvement after treatment. As in most neurological disorders, the main descriptions of schizophrenia physiopathology have been focused on neural network deficiencies. However, to sustain proper neural activity in the brain, another, no less important network is operating: the vast, complex and fascinating vascular network. Increasing research has characterized schizophrenia as a systemic disease where vascular involvement is important. Several neuro-angiogenic pathway disturbances have been related to schizophrenia. Alterations, ranging from genetic polymorphisms, mRNA, and protein alterations to microRNA and abnormal metabolite processing, have been evaluated in plasma, post-mortem brain, animal models, and patient-derived induced pluripotent stem cell (hiPSC) models. During embryonic brain development, the coordinated formation of blood vessels parallels neuro/gliogenesis and results in the structuration of the neurovascular niche, which brings together physical and molecular signals from both systems conforming to the Blood-Brain barrier. In this review, we offer an upfront perspective on distinctive angiogenic and neurogenic signaling pathways that might be involved in the biological causality of schizophrenia. We analyze the role of pivotal angiogenic-related pathways such as Vascular Endothelial Growth Factor and HIF signaling related to hypoxia and oxidative stress events; classic developmental pathways such as the NOTCH pathway, metabolic pathways such as the mTOR/AKT cascade; emerging neuroinflammation, and neurodegenerative processes such as UPR, and also discuss non-canonic angiogenic/axonal guidance factor signaling. Considering that all of the mentioned above pathways converge at the Blood-Brain barrier, reported neurovascular alterations could have deleterious repercussions on overall brain functioning in schizophrenia.

8.
World Neurosurg ; 164: e1015-e1023, 2022 08.
Article in English | MEDLINE | ID: mdl-35643402

ABSTRACT

BACKGROUND: Arteriovenous malformations (AVMs) located in eloquent areas are associated with a significant risk of neurologic deterioration. Awake surgery applied to intracranial AVMs could better identify eloquent areas, but its feasibility and application are controversial and limited to small case series. METHODS: We retrospectively reviewed a group of 59 brain AVMs located in eloquent areas surgically treated with asleep craniotomy and compared it with a combined group of patients treated with awake craniotomy. Patients were stratified into 2 groups: patients who underwent asleep surgery and patients who underwent awake surgery. With this study, we aimed to perform a complete analysis of surgical risks and outcomes for this subgroup of patients in order to provide a basis for a future prospective study. RESULTS: We compared the asleep group of 25 patients and the awake group of 34 patients. No statistically significant differences were identified regarding the risk of postoperative complications, surgical radicality, presence of residual, and need for adjuvant treatment (P = 1.00). The improvement in Karnofsky Performance Status (KPS) was more rapid and effective during follow-up in patients treated with awake surgery compared with asleep surgery (KPS at day 30 >70%-80% versus 87.2%, P = 0.01 and at 1year KPS >70%-80% vs. 96.9%, P = 0.02). CONCLUSIONS: In contrast to what is commonly believed, applying awake surgery to this lesion does not involve increased intraoperative risks. Still, it seems to determine a significant improvement in the outcome of patients from postoperative day 30 onwards.


Subject(s)
Brain Neoplasms , Intracranial Arteriovenous Malformations , Brain Neoplasms/surgery , Craniotomy , Humans , Intracranial Arteriovenous Malformations/surgery , Prospective Studies , Retrospective Studies , Wakefulness
9.
Mol Psychiatry ; 27(9): 3708-3718, 2022 09.
Article in English | MEDLINE | ID: mdl-35705634

ABSTRACT

Schizophrenia (SZ) is a complex neuropsychiatric disorder, affecting 1% of the world population. Long-standing clinical observations and molecular data have pointed to a possible vascular deficiency that could be acting synergistically with neuronal dysfunction in SZ. As SZ is a neurodevelopmental disease, the use of human-induced pluripotent stem cells (hiPSC) allows disease biology modeling while retaining the patient's unique genetic signature. Previously, we reported a VEGFA signaling impairment in SZ-hiPSC-derived neural lineages leading to decreased angiogenesis. Here, we present a functional characterization of SZ-derived brain microvascular endothelial-like cells (BEC), the counterpart of the neurovascular crosstalk, revealing an intrinsically defective blood-brain barrier (BBB) phenotype. Transcriptomic assessment of genes related to endothelial function among three control (Ctrl BEC) and five schizophrenia patients derived BEC (SZP BEC), revealed that SZP BEC have a distinctive expression pattern of angiogenic and BBB-associated genes. Functionally, SZP BEC showed a decreased angiogenic response in vitro and higher transpermeability than Ctrl BEC. Immunofluorescence staining revealed less expression and altered distribution of tight junction proteins in SZP BEC. Moreover, SZP BEC's conditioned media reduced barrier capacities in the brain microvascular endothelial cell line HCMEC/D3 and in an in vivo permeability assay in mice. Overall, our results describe an intrinsic failure of SZP BEC for proper barrier function. These findings are consistent with the hypothesis tracing schizophrenia origins to brain development and BBB dysfunction.


Subject(s)
Induced Pluripotent Stem Cells , Schizophrenia , Humans , Animals , Mice , Induced Pluripotent Stem Cells/metabolism , Blood-Brain Barrier/metabolism , Schizophrenia/metabolism , Brain , Cell Line
10.
Curr Opin Psychiatry ; 35(3): 146-156, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35266904

ABSTRACT

PURPOSE OF REVIEW: The vascular hypothesis of schizophrenia (SZ) postulates that brain endothelial dysfunction contributes to brain pathophysiology. This review discusses recent evidence for and against this hypothesis, including data related to blood-brain barrier (BBB), brain endothelium, and brain blood supply, to provide a critical weighed update. RECENT FINDINGS: Different studies report a consistent proportion of SZ patients showing increased BBB permeability, reflected by higher levels of albumin in the cerebral spinal fluid. Of note, this was not a result of antipsychotic medication. The high inflammatory profile observed in some SZ patients is strongly associated with increased BBB permeability to circulating immune cells, and with more severe cognitive deficiencies. Also, sex was found to interact with BBB integrity and permeability in SZ. The strongest independent genetic association with SZ has been identified in FZD1, a hypoxia-response gene that is 600-fold higher expressed in early development endothelium as compared to adult brain endothelium. Regarding brain blood supply, there is evidence to suggest alterations in proper brain perfusion in SZ. Nonetheless, ex-vivo experiments suggested that widely used antipsychotics favor vasoconstriction; thus, alterations in cerebral perfusion might be related to the patients' medication. SUMMARY: In some patients with SZ, a vulnerable brain endothelium may be interacting with environmental stressors, such as inflammation or hypoxia, converging into a more severe SZ symptomatology. Gene expression and performance of human brain endothelium could vary along with development and the establishment of the BBB; therefore, we encourage to investigate its possible contribution to SZ considering this dynamic context.


Subject(s)
Antipsychotic Agents , Schizophrenia , Adult , Antipsychotic Agents/therapeutic use , Brain , Humans , Hypoxia/metabolism , Inflammation , Schizophrenia/drug therapy
11.
Front Physiol ; 12: 769444, 2021.
Article in English | MEDLINE | ID: mdl-34925065

ABSTRACT

Variations in the availability of nutritional resources in animals can trigger reversible adjustments, which in the short term are manifested as behavioral and physiological changes. Several of these responses are mediated by Sirt1, which acts as an energy status sensor governing a global genetic program to cope with changes in nutritional status. Growing evidence suggests a key role of the response of the perinatal environment to caloric restriction in the setup of physiological responses in adulthood. The existence of adaptive predictive responses has been proposed, which suggests that early nutrition could establish metabolic capacities suitable for future food-scarce environments. We evaluated how perinatal food deprivation and maternal gestational weight gain impact the transcriptional, physiological, and behavioral responses in mice, when acclimated to caloric restriction in adulthood. Our results show a strong predictive capacity of maternal weight and gestational weight gain, in the expression of Sirt1 and its downstream targets in the brain and liver, mitochondrial enzymatic activity in skeletal muscle, and exploratory behavior in offspring. We also observed differential responses of both lactation and gestational food restriction on gene expression, thermogenesis, organ masses, and behavior, in response to adult caloric restriction. We conclude that the early nutritional state could determine the magnitude of responses to food scarcity later in adulthood, mediated by the pivotal metabolic sensor Sirt1. Our results suggest that maternal gestational weight gain could be an important life history trait and could be used to predict features that improve the invasive capacity or adjustment to seasonal food scarcity of the offspring.

12.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361013

ABSTRACT

Glioblastoma (GBM) is the most aggressive and common primary tumor of the central nervous system. It is characterized by having an infiltrating growth and by the presence of an excessive and aberrant vasculature. Some of the mechanisms that promote this neovascularization are angiogenesis and the transdifferentiation of tumor cells into endothelial cells or pericytes. In all these processes, the release of extracellular microvesicles by tumor cells plays an important role. Tumor cell-derived extracellular microvesicles contain pro-angiogenic molecules such as VEGF, which promote the formation of blood vessels and the recruitment of pericytes that reinforce these structures. The present study summarizes and discusses recent data from different investigations suggesting that Netrin-1, a highly versatile protein recently postulated as a non-canonical angiogenic ligand, could participate in the promotion of neovascularization processes in GBM. The relevance of determining the angiogenic signaling pathways associated with the interaction of Netrin-1 with its receptors is posed. Furthermore, we speculate that this molecule could form part of the microvesicles that favor abnormal tumor vasculature. Based on the studies presented, this review proposes Netrin-1 as a novel biomarker for GBM progression and vascularization.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neovascularization, Pathologic/genetics , Netrin-1/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Neovascularization, Pathologic/metabolism , Netrin Receptors/genetics , Netrin Receptors/metabolism , Netrin-1/genetics , Signal Transduction
13.
Clin Neurophysiol ; 132(10): 2519-2531, 2021 10.
Article in English | MEDLINE | ID: mdl-34454281

ABSTRACT

OBJECTIVE: To test the hypothesis that intermittent theta burst stimulation (iTBS) variability depends on the ability to engage specific neurons in the primary motor cortex (M1). METHODS: In a sham-controlled interventional study on 31 healthy volunteers, we used concomitant transcranial magnetic stimulation (TMS) and electroencephalography (EEG). We compared baseline motor evoked potentials (MEPs), M1 iTBS-evoked EEG oscillations, and resting-state EEG (rsEEG) between subjects who did and did not show MEP facilitation following iTBS. We also investigated whether baseline MEP and iTBS-evoked EEG oscillations could explain inter and intraindividual variability in iTBS aftereffects. RESULTS: The facilitation group had smaller baseline MEPs than the no-facilitation group and showed more iTBS-evoked EEG oscillation synchronization in the alpha and beta frequency bands. Resting-state EEG power was similar between groups and iTBS had a similar non-significant effect on rsEEG in both groups. Baseline MEP amplitude and beta iTBS-evoked EEG oscillation power explained both inter and intraindividual variability in MEP modulation following iTBS. CONCLUSIONS: The results show that variability in iTBS-associated plasticity depends on baseline corticospinal excitability and on the ability of iTBS to engage M1 beta oscillations. SIGNIFICANCE: These observations can be used to optimize iTBS investigational and therapeutic applications.


Subject(s)
Electroencephalography/methods , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Neuronal Plasticity/physiology , Theta Rhythm/physiology , Transcranial Magnetic Stimulation/methods , Adult , Female , Humans , Male , Young Adult
14.
Cell Adh Migr ; 15(1): 58-73, 2021 12.
Article in English | MEDLINE | ID: mdl-33724150

ABSTRACT

Neuroblastoma is a highly metastatic tumor that emerges from neural crest cell progenitors. Focal Adhesion Kinase (FAK) is a regulator of cell migration that binds to the receptor Neogenin-1 and is upregulated in neuroblastoma. Here, we show that Netrin-1 ligand binding to Neogenin-1 leads to FAK autophosphorylation and integrin ß1 activation in a FAK dependent manner, thus promoting neuroblastoma cell migration. Moreover, Neogenin-1, which was detected in all tumor stages and was required for neuroblastoma cell migration, was found in a complex with integrin ß1, FAK, and Netrin-1. Importantly, Neogenin-1 promoted neuroblastoma metastases in an immunodeficient mouse model. Taken together, these data show that Neogenin-1 is a metastasis-promoting protein that associates with FAK, activates integrin ß1 and promotes neuroblastoma cell migration.


Subject(s)
Integrin beta1 , Neuroblastoma , Animals , Cell Adhesion , Cell Movement , Focal Adhesion Kinase 1/genetics , Focal Adhesion Protein-Tyrosine Kinases , Membrane Proteins , Mice , Netrin-1
15.
Cancer Res ; 81(8): 2142-2156, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33593822

ABSTRACT

The extraordinary plasticity of glioma cells allows them to contribute to different cellular compartments in tumor vessels, reinforcing the vascular architecture. It was recently revealed that targeting glioma-derived pericytes, which represent a big percentage of the mural cell population in aggressive tumors, increases the permeability of the vessels and improves the efficiency of chemotherapy. However, the molecular determinants of this transdifferentiation process have not been elucidated. Here we show that mutations in EGFR stimulate the capacity of glioma cells to function as pericytes in a BMX- (bone marrow and X-linked) and SOX9-dependent manner. Subsequent activation of platelet-derived growth factor receptor beta in the vessel walls of EGFR-mutant gliomas stabilized the vasculature and facilitated the recruitment of immune cells. These changes in the tumor microenvironment conferred a growth advantage to the tumors but also rendered them sensitive to pericyte-targeting molecules such as ibrutinib or sunitinib. In the absence of EGFR mutations, high-grade gliomas were enriched in blood vessels, but showed a highly disrupted blood-brain barrier due to the decreased BMX/SOX9 activation and pericyte coverage, which led to poor oxygenation, necrosis, and hypoxia. Overall, these findings identify EGFR mutations as key regulators of the glioma-to-pericyte transdifferentiation, highlighting the intricate relationship between the tumor cells and their vascular and immune milieu. Our results lay the foundations for a vascular-dependent stratification of gliomas and suggest different therapeutic vulnerabilities determined by the genetic status of EGFR. SIGNIFICANCE: This study identifies the EGFR-related mechanisms that govern the capacity of glioma cells to transdifferentiate into pericytes, regulating the vascular and immune phenotypes of the tumors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2142/F1.large.jpg.


Subject(s)
Brain Neoplasms/blood supply , Cell Transdifferentiation , Cellular Microenvironment , Glioma/blood supply , Mutation , Pericytes/physiology , Adenine/analogs & derivatives , Adenine/pharmacology , Angiogenesis Inhibitors/pharmacology , Animals , Blood Vessels/metabolism , Blood Vessels/pathology , Blood-Brain Barrier/metabolism , Bone Marrow , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Chromosomes, Human, X , ErbB Receptors/genetics , Glioma/immunology , Glioma/pathology , Humans , Immunity, Cellular , Isocitrate Dehydrogenase/genetics , Mice , Pericytes/drug effects , Pericytes/metabolism , Piperidines/pharmacology , Receptor, Platelet-Derived Growth Factor beta/metabolism , SOX9 Transcription Factor , Sunitinib/pharmacology , Tumor Hypoxia , Tumor Microenvironment
17.
Synapse ; 74(10): e22158, 2020 10.
Article in English | MEDLINE | ID: mdl-32320502

ABSTRACT

CaMK2N1 and CaMK2N2 (also known as CaMKIINα and ß) are endogenous inhibitors of calcium/calmodulin-dependent kinase II (CaMKII), an enzyme critical for memory and long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning. CaMK2N1/2 mRNAs are rapidly and differentially upregulated in the hippocampus and amygdala after acquisition or retrieval of fear memory. Moreover, CaMK2N2 protein levels increase after contextual fear conditioning. Therefore, it was proposed that CaMK2N1/2 genes (Camk2n1/2) could be immediate-early genes transcribed promptly (30-60 min) after training. As a first approach to explore a role in synaptic plasticity, we assessed a possible regulation of Camk2n1/2 during the expression phase of LTP in hippocampal CA3-CA1 connections in rat brain slices. Quantitative PCR revealed that Camk2n1, but not Camk2n2, is upregulated 60 min after LTP induction by Schaffer collaterals high-frequency stimulation. We observed a graded, significant positive correlation between the magnitude of LTP and Camk2n1 change in individual slices, suggesting a coordinated regulation of these properties. If mRNA increment actually resulted in the protein upregulation in plasticity-relevant subcellular locations, CaMK2N1 may be involved in CaMKII fine-tuning during LTP maintenance or in the regulation of subsequent plasticity events (metaplasticity).


Subject(s)
Calcium-Binding Proteins/genetics , Hippocampus/metabolism , Long-Term Potentiation , Animals , Calcium-Binding Proteins/metabolism , Hippocampus/physiology , Male , Neuronal Plasticity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation
18.
Sci Rep ; 10(1): 4156, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139739

ABSTRACT

In order to maintain the energy balance, animals often exhibit several physiological adjustments when subjected to a decrease in resource availability. Specifically, some rodents show increases in behavioral activity in response to food restriction; a response regarded as a paradox because it would imply an investment in locomotor activity, despite the lack of trophic resources. Here, we aim to explore the possible existence of trade-offs between metabolic variables and behavioral responses when rodents are faced to stochastic deprivation of food and caloric restriction. Adult BALB/c mice were acclimatized for four weeks to four food treatments: two caloric regimens (ad libitum and 60% restriction) and two periodicities (continuous and stochastic). In these mice, we analyzed: exploratory behavior and home-cage behavior, basal metabolic rate, citrate synthase and cytochrome oxidase c enzyme activity (in liver and skeletal muscle), body temperature and non-shivering thermogenesis. Our results support the model of allocation, which indicates commitments between metabolic rates and exploratory behavior, in a caloric restricted environment. Specifically, we identify the role of thermogenesis as a pivotal budget item, modulating the reallocation of energy between behavior and basal metabolic rate. We conclude that brown adipose tissue and liver play a key role in the development of paradoxical responses when facing decreased dietary availability.


Subject(s)
Exploratory Behavior/physiology , Animals , Body Temperature , Eating/physiology , Energy Metabolism/physiology , Male , Mice , Mice, Inbred BALB C
19.
Int J Mol Sci ; 20(6)2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30897795

ABSTRACT

Gestational diabetes mellitus (GDM) is a common metabolic disorder, defined by high blood glucose levels during pregnancy, which affects foetal and post-natal development. However, the cellular and molecular mechanisms of this detrimental condition are still poorly understood. A dysregulation in circulating angiogenic trophic factors, due to a dysfunction of the feto-placental unit, has been proposed to underlie GDM. But even the detailed study of canonical pro-angiogenic factors like vascular endothelial growth factor (VEGF) or basic Fibroblast Growth Factor (bFGF) has not been able to fully explain this detrimental condition during pregnancy. Netrins are non-canonical angiogenic ligands produced by the stroma have shown to be important in placental angiogenesis. In order to address the potential role of Netrin signalling in GDM, we tested the effect of Netrin-1, the most investigated member of the family, produced by Wharton's Jelly Mesenchymal Stem Cells (WJ-MSC), on Human Umbilical Vein Endothelial Cells (HUVEC) angiogenesis. WJ-MSC and HUVEC primary cell cultures from either healthy or GDM pregnancies were exposed to physiological (5 mM) or high (25 mM) d-glucose. Our results reveal that Netrin-1 is secreted by WJ-MSC from healthy and GDM and both expression and secretion of the ligand do not change with distinct experimental glucose conditions. Noteworthy, the expression of its anti-angiogenic receptor UNC5b is reduced in GDM HUVEC compared with its expression in healthy HUVEC, accounting for an increased Netrin-1 signalling in these cells. Consistently, in healthy HUVEC, UNC5b overexpression induces cell retraction of the sprouting phenotype.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Netrin-1/metabolism , Receptors, Cell Surface/metabolism , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Female , Humans , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Netrin Receptors , Netrin-1/genetics , Pregnancy , Receptors, Cell Surface/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism
20.
Cell Adh Migr ; 13(1): 33-40, 2019 12.
Article in English | MEDLINE | ID: mdl-30160193

ABSTRACT

Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. It arises during development of the sympathetic nervous system. Netrin-4 (NTN4), a laminin-related protein, has been proposed as a key factor to target NB metastasis, although there is controversy about its function. Here, we show that NTN4 is broadly expressed in tumor, stroma and blood vessels of NB patient samples. Furthermore, NTN4 was shown to act as a cell adhesion molecule required for the migration induced by Neogenin-1 (NEO1) in SK-N-SH neuroblastoma cells. Therefore, we propose that NTN4, by forming a ternary complex with Laminin γ1 (LMγ1) and NEO1, acts as an essential extracellular matrix component, which induces the migration of SK-N-SH cells.


Subject(s)
Cell Movement , Gene Expression Regulation, Neoplastic , Laminin/metabolism , Nerve Tissue Proteins/metabolism , Netrins/metabolism , Neuroblastoma/pathology , Receptors, Cell Surface/metabolism , Cell Adhesion , Female , Humans , Infant , Male , Neuroblastoma/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...