Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 20(3): 340-9, 2001 Feb 01.
Article in English | MEDLINE | ID: mdl-11157741

ABSTRACT

Melanoma inhibitory activity (MIA) protein is a clinically valuable marker in patients with malignant melanoma, as enhanced values diagnose metastatic melanoma stages III and IV. Here we show that the recombinant human MIA adopts an SH3 domain-like fold in solution, with two perpendicular, antiparallel, three- and five-stranded beta-sheets. In contrast to known structures with the SH3 domain fold, MIA is a single-domain protein, and contains an additional antiparallel beta-sheet and two disulfide bonds. MIA is also the first extracellular protein found to have the SH3 domain-like fold. Furthermore, we show that MIA interacts with fibronectin and that the peptide ligands identified for MIA exhibit a matching sequence to type III human fibronectin repeats, especially to FN14, which is close to an integrin alpha4beta1 binding site. The present study, therefore, may explain the role of MIA in metastasis in vivo, and supports a model in which the binding of human MIA to type III repeats of fibronectin competes with integrin binding, thus detaching cells from the extracellular matrix.


Subject(s)
Melanoma/chemistry , Neoplasm Proteins/chemistry , Amino Acid Sequence , Binding Sites , Extracellular Matrix Proteins , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Melanoma/genetics , Models, Molecular , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Peptide Library , Protein Folding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , src Homology Domains
2.
Biochemistry ; 40(2): 336-44, 2001 Jan 16.
Article in English | MEDLINE | ID: mdl-11148027

ABSTRACT

The oncoprotein MDM2 inhibits the tumor suppressor protein p53 by binding to the p53 transactivation domain. The p53 gene is inactivated in many human tumors either by mutations or by binding to oncogenic proteins. In some tumors, such as soft tissue sarcomas, overexpression of MDM2 inactivates an otherwise intact p53, disabling the genome integrity checkpoint and allowing cell cycle progression of defective cells. Disruption of the MDM2/p53 interaction leads to increased p53 levels and restored p53 transcriptional activity, indicating restoration of the genome integrity check and therapeutic potential for MDM2/p53 binding antagonists. Here, we show by multidimensional NMR spectroscopy that chalcones (1,3-diphenyl-2-propen-1-ones) are MDM2 inhibitors that bind to a subsite of the p53 binding cleft of human MDM2. Biochemical experiments showed that these compounds can disrupt the MDM2/p53 protein complex, releasing p53 from both the p53/MDM2 and DNA-bound p53/MDM2 complexes. These results thus offer a starting basis for structure-based drug design of cancer therapeutics.


Subject(s)
Chalcone/analogs & derivatives , Chalcone/pharmacology , Nuclear Proteins , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology , Binding, Competitive/drug effects , Chalcone/chemical synthesis , DNA/metabolism , Humans , Kinetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding/drug effects , Proto-Oncogene Proteins c-mdm2 , Tryptophan/metabolism
3.
Mycotoxin Res ; 17 Suppl 2: 202-5, 2001 Jun.
Article in English | MEDLINE | ID: mdl-23605872

ABSTRACT

Enzyme-linked immunosorbent assays (ELISA) proved to be a fast and simple method for the detection of mycotoxins and other undesired contaminants in food and feed. The present study is focused on the optimisation and exploitation of the egg yolk antibody technology in order to develop competitive ELISAs for the detection of mycotoxins in cereals. Due to its importance as one of the most relevant Fusarium mycotoxins, the trichothecene deoxynivalenol (DON) was selected as representative. Chickens were immunised with different protein conjugates performing varying booster intervals. The antibodies were isolated by the poly(ethylene glycol) precipitation method according to Polson. By use of these antibodies an indirect competitive ELISA was developed for the detection of DON. First investigations of naturally contaminated wheat samples showed a good correspondence with results obtained by GC-ECD when calibration in blank wheat extracts was performed.

4.
J Mol Biol ; 279(5): 1053-9, 1998 Jun 26.
Article in English | MEDLINE | ID: mdl-9642083

ABSTRACT

beta gamma-Crystallins from the eye lens are proteins consisting of two domains joined by a short linker. All 3D structures solved so far reveal a similar pseudo-2-fold pairing of the domains, reflecting their presumed ancient origin from a single-domain homodimer. Here we report the 2.2 A X-ray structure of the N-terminal domain of gammaB-crystallin, bearing a mutation of a residue involved in domain contacts in the native molecule (Phe56Ala). It forms a crystallographic homodimer, yet the domain orientation is different from native beta gamma-crystallins. It is considered that the new orientation derives from two structural features. (1) The replacement of the bulky phenylalanine 56 by an alanine results in a different optimal hydrophobic packing of interface residues between identical domains. (2) The paired domains have extensions derived from the domain linker, each containing a proline conserved in gamma-crystallins, and the resulting steric constraints preclude a native-like pairing but support the new arrangement. These data highlight the pivotal role of interface residues and sequence extensions in overall domain assembly.


Subject(s)
Crystallins/chemistry , Protein Conformation , Animals , Cattle , Crystallography, X-Ray , Models, Molecular , Mutation , gamma-Crystallins
5.
Protein Sci ; 7(3): 611-8, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9541393

ABSTRACT

GammaB-crystallin consists of two domains each comprising two "Greek key" motifs. Both domains fold independently, and domain interactions contribute significantly to the stability of the C-terminal domain. In a previous study (Palme S et al., 1996, Protein Sci 6:1529-1636) it was shown that Phe56 from the N-terminal domain, a residue involved in forming a hydrophobic core at the domain interface, effects the interaction of the two domains, and therefore, the stability of the C-terminal domain. Ala or Asp at position 56 drastically decreased the stability of the C-terminal domain, whereas Trp had a more moderate effect. In this article we present the X-ray structures of these interface mutants and correlate them with the stability data. The mutations do not effect the overall structure of the molecule. No structural changes are observed in the vicinity of the replaced residue, suggesting that the local structure is too rigid to allow compensations for the amino acid replacements. In the mutants gammaB-F56A and -F56D, a solvent-filled groove accessible to the bulk solvent is created by the replacement of the bulky Phe side chain. In gammaB-F56W, the pyrrole moiety of the indole ring replaces the phenyl side chain of the wild type. With the exception of gammaB-F56W, there is a good correlation between the hydrophobicity of the amino acid at position 56 according to the octanol scale and the stability of the C-terminal domain. In gammaB-F56W, the C-terminal domain is less stable than estimated from the hydrophobicity, presumably because the ring nitrogen (Nepsilon1) has no partner to form hydrogen bonds. The data suggest that the packing of hydrophobic residues in the interface core is important for domain interactions and the stability of gammaB-crystallin. Apparently, for protein stability, the same principles apply for hydrophobic cores within domains and at domain interfaces.


Subject(s)
Crystallins/ultrastructure , Animals , Cattle , Crystallins/genetics , Crystallography, X-Ray , Lens, Crystalline/ultrastructure , Models, Molecular , Point Mutation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins , Solvents , Structure-Activity Relationship , Water
6.
Protein Sci ; 6(7): 1529-36, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9232654

ABSTRACT

gamma B-crystallin is a monomeric member of the beta gamma-superfamily of vertebrate eye lens proteins. It consists of two similar domains with all-beta Greek key topology associating about an approximate two-fold axis. At pH 2, with urea as the denaturant, the domains show independent equilibrium unfolding transitions, suggesting different intrinsic stabilities. Denaturation experiments using recombinant one- or two-domain proteins showed that the N-terminal domain on its own exhibits unaltered intrinsic stability but contributes significantly to the stability of its C-terminal partner. It has been suggested that docking of the domains is determined by a hydrophobic interface that includes phenylalanine at position 56 of the N-terminal domain. In order to test this hypothesis, F56 was substituted by site-directed mutagenesis in both complete gamma B-crystallin and its isolated N-terminal domain. All mutations destabilize the N-terminal domain to about the same extent but affect the C-terminal domain in a different way. Replacement by the small alanine side chain or the charged aspartic acid residue results in a significant destabilization of the C-terminal domain, whereas the more bulky tryptophan residue causes only a moderate decrease in stability. In the mutants F56A and F56D, equilibrium unfolding transitions obtained by circular dichroism and intrinsic fluorescence differ, suggesting a more complex denaturation behavior than the one observed for gamma B wild type. These results confirm how mutations in one crystallin domain can affect the stability of another when they occur at the interface. The results strongly suggest that size, hydrophobicity, and optimal packing of amino acids involved in these interactions are critical for the stability of gamma B-crystallin.


Subject(s)
Crystallins/chemistry , Lens, Crystalline/chemistry , Animals , Cattle , Circular Dichroism , Crystallins/drug effects , Crystallins/genetics , DNA Mutational Analysis , Guanidine , Guanidines/pharmacology , Models, Molecular , Mutagenesis, Site-Directed , Peptide Fragments/chemistry , Peptide Fragments/genetics , Phenylalanine/genetics , Protein Conformation , Protein Denaturation , Recombinant Proteins/chemistry , Urea/pharmacology , gamma-Crystallins
SELECTION OF CITATIONS
SEARCH DETAIL
...