Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 95(11): e10934, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37845010

ABSTRACT

Three sequential batch reactors were operated for the enrichment in microbial communities able to store polyhydroxyalkanoates (PHAs) using activated sludge as inoculum. They ran simultaneously under the same operational conditions (organic loading rate, hydraulic and solids retention time, cycle length, C/N ratio) just with the solely difference of the working temperature: psychrophilic (15°C), mesophilic (30°C), and thermophilic (48°C). The microbial communities enriched showed different behaviors in terms of consumption and production rates. In terms of PHA accumulation, the psychrophilic community was able to accumulate an average amount of 17.7 ± 5.7 wt% poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the mesophilic 40.3 ± 7.0 wt% PHBV, and the thermophilic 14.8 ± 0.3 wt% PHBV in dry weight over total solids. The average PHBV production yields for each selected community were 0.41 ± 0.12 CmmolPHBV /CmmolVFA at 15°C, 0.64 ± 0.05 CmmolPHBV /CmmolVFA at 30°C, and 0.39 ± 0.14 CmmolPHBV /CmmolVFA at 48°C. The overall performance of the mesophilic reactor was better than the other two, and the copolymers obtained at this temperature contained a higher PHV fraction. The physico-chemical properties of the obtained biopolymers at each temperature were also measured, and major differences were found in the molecular weight, following an increasing trend with temperature. PRACTITIONER POINTS: PHBV molecular weight is influenced by the operational temperature increasing with it. Increasing temperatures promote the production of HB over HV. The best accumulation performance was found at 30°C for the tested operational conditions.


Subject(s)
Polyhydroxyalkanoates , Temperature , Hydroxybutyrates , Bioreactors
2.
J Hazard Mater ; 439: 129696, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36104917

ABSTRACT

The aim of this study was to investigate the pyrolysis products of polyhydroxyalkanoates (PHAs), polyethylene terephthalate (PET), carbon fiber reinforced composite (CFRC), and block co-polymers (PS-b-P2VP and PS-b-P4VP). The studied PHA samples were produced at temperatures of 15 and 50 oC (PHA15 and PHA50), and commercially obtained from GlasPort Bio (PHAc). Initially, PHA samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy and size exclusion chromatography (SEC) to determine the molecular weight, and structure of the polymers. Thermal techniques such as thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses were performed for PHA, CFRC, and block co-polymers to investigate the degradation temperature range and thermal stability of samples. Fast pyrolysis (500 oC, ∼102 °C s-1) experiments were conducted for all samples in a wire mesh reactor to investigate tar products and char yields. The tar compositions were investigated by gas chromatography-mass spectrometry (GC-MS), and statistical modeling was performed. The char yields of block co-polymers and PHA samples (<2 wt. %) were unequivocally less than that of the PET sample (~10.7 wt. %). All PHA compounds contained a large fraction of ethyl cyclopropane carboxylate (~ 38-58 %), whereas PAH15 and PHA50 additionally showed a large quantity of 2-butenoic acid (~8-12 %). The PHAc sample indicated the presence of considerably high amount of methyl ester (~15 %), butyl citrate (~12.9 %), and tributyl ester (~17 %). The compositional analyses of the liquid fraction of the PET and block co-polymers have shown carcinogenic and toxic properties. Pyrolysis removed matrices in the CRFC composites which is an indication of potential recovery of the original fibers.


Subject(s)
Plastics , Pyrolysis , Esters , Recycling , Tars
3.
J Biotechnol ; 348: 10-25, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35298952

ABSTRACT

The first observation of a polyhydroxyalkanoate (PHA) aggregate was in 1888 by Beijenrinck. Despite polyhydroxybutyrate (PHB) being the first type of PHA discovered, it was not extracted and characterized until 1925 by Maurice Lemoigne in France, even before the concept of "macromolecules" was known. After more than 30 years, in 1958, Wilkinson and co-workers rediscovered PHB and its metabolic role in the cells as storage compound. PHB started to be appealing to the industry in the 1980s, when a few companies started to commercialize microbially produced PHAs. During the 1990 s, the focus was on reducing production costs to make PHA production economically feasible, for instance by genetically modified microorganisms and even plants. Since then, many advances have been made: diverse wastes as feedstock, different production processes, and tailored design of biopolymers. This paper summarizes the scientific and technological development of PHAs from their discovery in 1888 until their latest applications and current commercial uses. Future perspectives have been devised too based on the current bottlenecks.


Subject(s)
Polyhydroxyalkanoates , Biocompatible Materials , Biopolymers , Humans , Polyhydroxyalkanoates/metabolism
4.
Article in English | MEDLINE | ID: mdl-34639476

ABSTRACT

The wastewater from the cookers of a tuna-canning plant was used as feedstock for the process. It was acidified in a continuous stirred tank reactor (CSTR) of 1.5 L to produce a mixture of volatile fatty acids (VFAs). The effluent contained 28.3 ± 8.7 g CODS/L and 25.0 ± 4.6 g CODVFA/L, 4.4 ± 1.6 g NH4+/L, and 10.9 ± 4.0 g Na+/L, which corresponds to about 28 g NaCl/L approximately. This was used to feed a PHA production system. The enriched MMC presented a capacity to accumulate PHAs from the fermented tuna wastewater. The maximum PHA content of the biomass in the fed-batch (8.35 wt% PHA) seemed very low, possibly due to the variable salinity (from 2.2 up to 12.3 g NaCl/L) and the presence of ammonium (which promoted the biomass growth). The batch assay showed a PHA accumulation of 5.70 wt% PHA, but this is a much better result if the productivity of the reactor is taken into account. The fed-batch reactor had a productivity of 10.3 mg PHA/(L h), while the batch value was about five times higher (55.4 mg PHA/(L h)). At the sight of the results, it can be seen that the acidification of fish-canning wastewater is possible even at high saline concentrations (27.7 g NaCl/L). On the other hand, the enrichment and accumulation results show us promising news and which direction has to be followed: PHAs can be obtained from challenging substrates, and the feeding mode during the accumulation stage has an important role to play when it comes to inhibition.


Subject(s)
Environmental Pollutants , Polyhydroxyalkanoates , Bioreactors , Fatty Acids, Volatile , Fermentation , Polyhydroxyalkanoates/metabolism , Wastewater
5.
Water Res ; 66: 190-198, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25213684

ABSTRACT

Waste-based polyhydroxyalkanoate (PHA) production by bacterial enrichments generally follows a three step strategy in which first the wastewater is converted into a volatile fatty acid rich stream that is subsequently used as substrate in a selector and biopolymer production units. In this work, a bacterial community with high biopolymer production capacity was enriched using glycerol, a non-fermented substrate. The substrate versatility and PHA production capacity of this community was studied using glucose, lactate, acetate and xylitol as substrate. Except for xylitol, very high PHA producing capacities were obtained. The PHA accumulation was comparable or even higher than with glycerol as substrate. This is the first study that established a high PHA content (≈70 wt%) with glucose as substrate in a microbial enrichment culture. The results presented in this study support the development of replacing pure culture based PHA production by bacterial enrichment cultures. A process where mixtures of substrates can be easily handled and the acidification step can potentially be avoided is described.


Subject(s)
Bioreactors/microbiology , Glycerol/metabolism , Polyhydroxyalkanoates/metabolism , Biopolymers/metabolism
6.
Biotechnol Bioeng ; 110(12): 3148-55, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23835920

ABSTRACT

PHA, a naturally occurring biopolymer produced by a wide range of microorganisms, is known for its applications as bioplastic. In recent years the use of agro-industrial wastewater as substrate for PHA production by bacterial enrichments has attracted considerable research attention. Crude glycerol as generated during biodiesel production is a waste stream that due to its high organic matter content and low price could be an interesting substrate for PHA production. Previously we have demonstrated that when glycerol is used as substrate in a feast-famine regime, PHA and polyglucose are simultaneously produced as storage polymers. The work described in this paper aimed at understanding the effect of the cycle length on the bacterial enrichment process with emphasis on the distribution of glycerol towards PHA and polyglucose. Two sequencing batch reactors where operated with the same hydraulic and biomass retention time. A short cycle length (6 h) favored polyglucose production over PHA, whereas at long cycle length (24 h) PHA was more favored. In both communities the same microorganism appeared dominating, suggesting a metabolic rather than a microbial competition response. Moreover, the presence of ammonium during polymer accumulation did not influence the maximum amount of PHA that was attained.


Subject(s)
Bacteria/metabolism , Glucans/metabolism , Glycerol/metabolism , Polyhydroxyalkanoates/metabolism , Ammonium Compounds/metabolism , Bioreactors/microbiology , Biota , Culture Media/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...