Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 372(6539)2021 04 16.
Article in English | MEDLINE | ID: mdl-33859004

ABSTRACT

Quantum computing hardware technologies have advanced during the past two decades, with the goal of building systems that can solve problems that are intractable on classical computers. The ability to realize large-scale systems depends on major advances in materials science, materials engineering, and new fabrication techniques. We identify key materials challenges that currently limit progress in five quantum computing hardware platforms, propose how to tackle these problems, and discuss some new areas for exploration. Addressing these materials challenges will require scientists and engineers to work together to create new, interdisciplinary approaches beyond the current boundaries of the quantum computing field.

2.
Nat Commun ; 8: 14148, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28128205

ABSTRACT

The deterministic generation of non-classical states of light, including squeezed states, Fock states and Bell states, plays an important role in quantum information processing and exploration of the physics of quantum entanglement. Preparation of these non-classical states in resonators is non-trivial due to their inherent harmonicity. Here we use stimulated Raman adiabatic passage to generate microwave photon Fock states in a superconducting circuit quantum electrodynamics system comprised of a fixed-frequency transmon qubit in a three-dimensional microwave cavity at 20 mK. A two-photon process is employed to overcome a first order forbidden transition and the first, second and third Fock states are demonstrated. We also demonstrate how this all-microwave technique can be used to generate an arbitrary superposition of Fock states. Simulations of the system are in excellent agreement with the data and fidelities of 89%, 68% and 43% are inferred for the first three Fock states respectively.

3.
Phys Rev Lett ; 106(12): 120501, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21517289

ABSTRACT

We present results on a circuit QED experiment in which a separate transmission line is used to address a quasilumped element superconducting microwave resonator which is in turn coupled to an Al/AlO(x)/Al Cooper-pair box charge qubit. With our device, we find a strong correlation between the lifetime of the qubit and the inverse of the coupling between the qubit and the transmission line. At the smallest coupling we measured, the lifetime of the Cooper-pair box was T1=200 µs, which represents more than a twentyfold improvement in the lifetime of the Cooper-pair box compared with previous results. These results imply that the loss tangent in the AlO(x) junction barrier must be less than about 4×10⁻8 at 4.5 GHz, about 4 orders of magnitude less than reported in larger area Al/AlO(x)/Al tunnel junctions.

4.
Crit Care Med ; 28(5): 1503-8, 2000 May.
Article in English | MEDLINE | ID: mdl-10834703

ABSTRACT

OBJECTIVE: To determine whether epinephrine in combination with high flow worsens left ventricular (LV) myocardial high-energy phosphate stores during reperfusion of ischemic ventricular fibrillation (VF). DESIGN: Blinded, prospective block randomized, placebo controlled study. SETTING: University medical center research laboratory. SUBJECTS: A total of 22 mixed breed swine weighing 22.0+/-3.3 kg (SD). INTERVENTIONS: Open-chest swine, anesthetized with alpha-chloralose, underwent 10 mins of nonperfused VF followed by reperfusion with cardiopulmonary bypass for 90 mins and then defibrillation. Animals were block randomized to four groups for reperfusion: Group 1 (n = 5), high flow (100 mL/kg/min) and epinephrine (2.5 microg/kg/min); Group 2 (n = 5), high flow and placebo; Group 3 (n = 6), low flow (30 mL/kg/min) and epinephrine; and Group 4 (n = 6), low flow and placebo. MEASUREMENTS AND MAIN RESULTS: In vivo LV creatine phosphate (CP) and adenosine triphosphate (ATP) were determined using whole wall and spatially localized 31P NMR spectroscopy at 4.7 Tesla. During perfusion of the fibrillating myocardium, epinephrine significantly increased aortic pressure (p < .05) and improved defibrillation rates (p < .01). ATP levels during reperfusion were significantly decreased within all groups compared with baseline. There were no differences in ATP levels between groups. High flow, independent of epinephrine, was associated with increased preservation of ATP (p < .05), increased CP/ATP ratios (p < .02) in all layers of the LV wall, and decreased aortic and cardiac vein lactates (p < .001). CONCLUSIONS: Epinephrine, in combination with flow higher than standard cardiopulmonary resuscitation flows, increased perfusion pressure and defibrillation rates, but did not significantly alter myocardial ATP during VF reperfusion in the in vivo heart Reperfusion flow, independent of epinephrine, is a critical determinant of myocardial ATP preservation.


Subject(s)
Adenosine Triphosphate/metabolism , Epinephrine/pharmacology , Myocardial Reperfusion Injury/physiopathology , Myocardium/metabolism , Ventricular Fibrillation/physiopathology , Animals , Blood Flow Velocity/physiology , Energy Metabolism/physiology , Magnetic Resonance Spectroscopy , Phosphocreatine/metabolism , Prospective Studies , Swine , Ventricular Function, Left/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...