Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
G3 (Bethesda) ; 13(3)2023 03 09.
Article in English | MEDLINE | ID: mdl-36650008

ABSTRACT

Non-mammalian model organisms have been essential for our understanding of the mechanisms that control development, disease, and physiology, but they are underutilized in pharmacological and toxicological phenotypic screening assays due to their low throughput in comparison with cell-based screens. To increase the utility of using Drosophila melanogaster in screening, we designed the Whole Animal Feeding FLat (WAFFL), a novel, flexible, and complete system for feeding, monitoring, and assaying flies in a high-throughput format. Our 3D printed system is compatible with inexpensive and readily available, commercial 96-well plate consumables and equipment. Experimenters can change the diet at will during the experiment and video record for behavior analysis, enabling precise dosing, measurement of feeding, and analysis of behavior in a 96-well plate format.


Subject(s)
Animal Feed , Drosophila melanogaster , Animals , Drosophila melanogaster/physiology , High-Throughput Screening Assays
2.
Am J Hematol ; 90(6): 534-40, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25779970

ABSTRACT

Coagulation factor VIII and von Willebrand factor (VWF) are key proteins in procoagulant activation. Higher FVIII coagulant activity (FVIII :C) and VWF antigen (VWF :Ag) are risk factors for cardiovascular disease and venous thromboembolism. Beyond associations with ABO blood group, genetic determinants of FVIII and VWF are not well understood, especially in non European-American populations. We performed a genetic association study of FVIII :C and VWF:Ag that assessed 50,000 gene-centric single nucleotide polymorphisms (SNPs) in 18,556 European Americans (EAs) and 5,047 African Americans (AAs) from five population-based cohorts. Previously unreported associations for FVIII :C were identified in both AAs and EAs with KNG1 (most significantly associated SNP rs710446, Ile581Thr, Ile581Thr, P = 5.10 × 10(-7) in EAs and P = 3.88 × 10(-3) in AAs) and VWF rs7962217 (Gly2705Arg,P = 6.30 × 10(-9) in EAs and P = 2.98 × 10(-2) in AAs. Significant associations for FVIII :C were also observed with F8/TMLHE region SNP rs12557310 in EAs (P = 8.02 × 10(-10) ), with VWF rs1800380 in AAs (P = 5.62 × 10(-11) ), and with MAT1A rs2236568 in AAs (P51.69 × 10(-6) ). We replicated previously reported associations of FVIII :C and VWF :Ag with the ABO blood group, VWF rs1063856(Thr789Ala), rs216321 (Ala852Gln), and VWF rs2229446 (Arg2185Gln). Findings from this study expand our understanding of genetic influences for FVIII :C and VWF :Ag in both EAs and AAs.


Subject(s)
Black or African American/genetics , Factor VIII , Polymorphism, Single Nucleotide , White People/genetics , von Willebrand Factor , Adult , Aged , Factor VIII/genetics , Factor VIII/metabolism , Female , Genetic Loci , Genome-Wide Association Study , Humans , Male , Methionine Adenosyltransferase/blood , Methionine Adenosyltransferase/genetics , Middle Aged , Venous Thromboembolism/blood , Venous Thromboembolism/genetics , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
3.
Thromb Res ; 134(2): 462-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24908450

ABSTRACT

INTRODUCTION: D-dimer, a fibrin degradation product, is related to risk of cardiovascular disease and venous thromboembolism. Genetic determinants of D-dimer are not well characterized; notably, few data have been reported for African American (AA), Asian, and Hispanic populations. MATERIALS AND METHODS: We conducted a large-scale candidate gene association study to identify variants in genes associated with D-dimer levels in multi-ethnic populations. Four cohorts, comprising 6,848 European Americans (EAs), 2,192 AAs, 670 Asians, and 1,286 Hispanics in the National Heart, Lung, and Blood Institute Candidate Gene Association Resource consortium, were assembled. Approximately 50,000 genotyped single nucleotide polymorphisms (SNPs) in 2,000 cardiovascular disease gene loci were analyzed by linear regression, adjusting for age, sex, study site, and principal components in each cohort and ethnic group. Results across studies were combined within each ethnic group by meta-analysis. RESULTS: Twelve SNPs in coagulation factor V (F5) and 3 SNPs in the fibrinogen alpha chain (FGA) were significantly associated with D-dimer level in EAs with p<2.0×10(-6). The signal for the most associated SNP in F5 (rs6025, factor V Leiden) was replicated in Hispanics (p=0.023), while that for the top functional SNP in FGA (rs6050) was replicated in AAs (p=0.006). No additional SNPs were significantly associated with D-dimer. CONCLUSIONS: Our study replicated previously reported associations of D-dimer with SNPs in F5 and FGA in EAs; we demonstrated replication of the association of D-dimer with FGA rs6050 in AAs and the factor V Leiden variant in Hispanics.


Subject(s)
Cardiovascular Diseases/blood , Cardiovascular Diseases/genetics , Fibrin Fibrinogen Degradation Products/analysis , Polymorphism, Single Nucleotide , Adult , Aged , Cardiovascular Diseases/ethnology , Ethnicity/genetics , Factor V/genetics , Female , Fibrinogen/genetics , Genetic Association Studies , Genotype , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Young Adult
4.
Hum Genet ; 133(8): 985-95, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24643644

ABSTRACT

C-reactive protein (CRP) is a heritable biomarker of systemic inflammation and a predictor of cardiovascular disease (CVD). Large-scale genetic association studies for CRP have largely focused on individuals of European descent. We sought to uncover novel genetic variants for CRP in a multiethnic sample using the ITMAT Broad-CARe (IBC) array, a custom 50,000 SNP gene-centric array having dense coverage of over 2,000 candidate CVD genes. We performed analyses on 7,570 African Americans (AA) from the Candidate gene Association Resource (CARe) study and race-combined meta-analyses that included 29,939 additional individuals of European descent from CARe, the Women's Health Initiative (WHI) and KORA studies. We observed array-wide significance (p < 2.2 × 10(-6)) for four loci in AA, three of which have been reported previously in individuals of European descent (IL6R, p = 2.0 × 10(-6); CRP, p = 4.2 × 10(-71); APOE, p = 1.6 × 10(-6)). The fourth significant locus, CD36 (p = 1.6 × 10(-6)), was observed at a functional variant (rs3211938) that is extremely rare in individuals of European descent. We replicated the CD36 finding (p = 1.8 × 10(-5)) in an independent sample of 8,041 AA women from WHI; a meta-analysis combining the CARe and WHI AA results at rs3211938 reached genome-wide significance (p = 1.5 × 10(-10)). In the race-combined meta-analyses, 13 loci reached significance, including ten (CRP, TOMM40/APOE/APOC1, HNF1A, LEPR, GCKR, IL6R, IL1RN, NLRP3, HNF4A and BAZ1B/BCL7B) previously associated with CRP, and one (ARNTL) previously reported to be nominally associated with CRP. Two novel loci were also detected (RPS6KB1, p = 2.0 × 10(-6); CD36, p = 1.4 × 10(-6)). These results highlight both shared and unique genetic risk factors for CRP in AA compared to populations of European descent.


Subject(s)
Biomarkers/analysis , Black or African American/genetics , C-Reactive Protein/metabolism , CD36 Antigens/genetics , Cardiovascular Diseases/etiology , Genetic Loci , Genetics, Population , Adult , Aged , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Meta-Analysis as Topic , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors
5.
Nat Genet ; 45(11): 1345-52, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24097064

ABSTRACT

Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.


Subject(s)
Cholesterol, HDL/genetics , Cholesterol, LDL/genetics , Coronary Artery Disease/blood , Triglycerides/blood , Triglycerides/genetics , Biological Transport , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Humans , Polymorphism, Single Nucleotide , Risk Factors , Triglycerides/metabolism
6.
Nat Genet ; 45(11): 1274-1283, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24097068

ABSTRACT

Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 × 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.


Subject(s)
Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Lipids/blood , Lipids/genetics , Asian People/genetics , Black People/genetics , Cholesterol, HDL/blood , Cholesterol, HDL/genetics , Cholesterol, LDL/blood , Cholesterol, LDL/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Triglycerides/blood , Triglycerides/genetics , White People/genetics
7.
Hum Genet ; 132(9): 1039-47, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23666277

ABSTRACT

Asthma originates from genetic and environmental factors with about half the risk of disease attributable to heritable causes. Genome-wide association studies, mostly in populations of European ancestry, have identified numerous asthma-associated single nucleotide polymorphisms (SNPs). Studies in populations with diverse ancestries allow both for identification of robust associations that replicate across ethnic groups and for improved resolution of associated loci due to different patterns of linkage disequilibrium between ethnic groups. Here we report on an analysis of 745 African-American subjects with asthma and 3,238 African-American control subjects from the Candidate Gene Association Resource (CARe) Consortium, including analysis of SNPs imputed using 1,000 Genomes reference panels and adjustment for local ancestry. We show strong evidence that variation near RAD50/IL13, implicated in studies of European ancestry individuals, replicates in individuals largely of African ancestry. Fine mapping in African ancestry populations also refined the variants of interest for this association. We also provide strong or nominal evidence of replication at loci near ORMDL3/GSDMB, IL1RL1/IL18R1, and 10p14, all previously associated with asthma in European or Japanese populations, but not at the PYHIN1 locus previously reported in studies of African-American samples. These results improve the understanding of asthma genetics and further demonstrate the utility of genetic studies in populations other than those of largely European ancestry.


Subject(s)
Asthma/genetics , Black People/genetics , Chromosomes, Human, Pair 10/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Acid Anhydride Hydrolases , Asthma/ethnology , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Female , Genetic Association Studies , Genetic Loci/genetics , Genotype , Humans , Interleukin-13/genetics , Male , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Interleukin-1/genetics , Receptors, Interleukin-18/genetics
9.
Circ Cardiovasc Genet ; 5(6): 639-46, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23139255

ABSTRACT

BACKGROUND: The PR interval, as measured by the resting, standard 12-lead ECG, reflects the duration of atrial/atrioventricular nodal depolarization. Substantial evidence exists for a genetic contribution to PR, including genome-wide association studies that have identified common genetic variants at 9 loci influencing PR in populations of European and Asian descent. However, few studies have examined loci associated with PR in African Americans. METHODS AND RESULTS: We present results from the largest genome-wide association study to date of PR in 13 415 adults of African descent from 10 cohorts. We tested for association between PR (ms) and ≈2.8 million genotyped and imputed single-nucleotide polymorphisms. Imputation was performed using HapMap 2 YRI and CEU panels. Study-specific results, adjusted for global ancestry and clinical correlates of PR, were meta-analyzed using the inverse variance method. Variation in genome-wide test statistic distributions was noted within studies (λ range: 0.9-1.1), although not after genomic control correction was applied to the overall meta-analysis (λ: 1.008). In addition to generalizing previously reported associations with MEIS1, SCN5A, ARHGAP24, CAV1, and TBX5 to African American populations at the genome-wide significance level (P<5.0 × 10(-8)), we also identified a novel locus: ITGA9, located in a region previously implicated in SCN5A expression. The 3p21 region harboring SCN5A also contained 2 additional independent secondary signals influencing PR (P<5.0 × 10(-8)). CONCLUSIONS: This study demonstrates the ability to map novel loci in African Americans as well as the generalizability of loci associated with PR across populations of African, European, and Asian descent.


Subject(s)
Black or African American/genetics , Electrocardiography , Genetic Loci/genetics , Genome-Wide Association Study , Adult , Cohort Studies , Female , Humans , Male , Meta-Analysis as Topic , Middle Aged , Polymorphism, Single Nucleotide/genetics
10.
PLoS One ; 7(9): e44008, 2012.
Article in English | MEDLINE | ID: mdl-23028483

ABSTRACT

RATIONALE: Asthma has substantial morbidity and mortality and a strong genetic component, but identification of genetic risk factors is limited by availability of suitable studies. OBJECTIVES: To test if population-based cohorts with self-reported physician-diagnosed asthma and genome-wide association (GWA) data could be used to validate known associations with asthma and identify novel associations. METHODS: The APCAT (Analysis in Population-based Cohorts of Asthma Traits) consortium consists of 1,716 individuals with asthma and 16,888 healthy controls from six European-descent population-based cohorts. We examined associations in APCAT of thirteen variants previously reported as genome-wide significant (P<5 x 10(-8)) and three variants reported as suggestive (P<5× 10(-7)). We also searched for novel associations in APCAT (Stage 1) and followed-up the most promising variants in 4,035 asthmatics and 11,251 healthy controls (Stage 2). Finally, we conducted the first genome-wide screen for interactions with smoking or hay fever. MAIN RESULTS: We observed association in the same direction for all thirteen previously reported variants and nominally replicated ten of them. One variant that was previously suggestive, rs11071559 in RORA, now reaches genome-wide significance when combined with our data (P = 2.4 × 10(-9)). We also identified two genome-wide significant associations: rs13408661 near IL1RL1/IL18R1 (P(Stage1+Stage2) = 1.1x10(-9)), which is correlated with a variant recently shown to be associated with asthma (rs3771180), and rs9268516 in the HLA region (P(Stage1+Stage2) = 1.1x10(-8)), which appears to be independent of previously reported associations in this locus. Finally, we found no strong evidence for gene-environment interactions with smoking or hay fever status. CONCLUSIONS: Population-based cohorts with simple asthma phenotypes represent a valuable and largely untapped resource for genetic studies of asthma.


Subject(s)
Asthma/genetics , Genome-Wide Association Study , HLA Antigens/genetics , Quantitative Trait Loci , Adult , Cohort Studies , Genetic Predisposition to Disease , Humans , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors
11.
PLoS Genet ; 8(8): e1002793, 2012.
Article in English | MEDLINE | ID: mdl-22876189

ABSTRACT

Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the "Metabochip," a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.


Subject(s)
Anthropometry/instrumentation , Metabolomics/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Alleles , Anthropometry/methods , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Frequency , Genome, Human , Genome-Wide Association Study , Genotype , Genotyping Techniques , Humans , Metabolomics/methods , Oligonucleotide Array Sequence Analysis/methods , Phenotype
12.
Hum Mol Genet ; 21(23): 5193-201, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22914739

ABSTRACT

Previous meta-analysis of genome-wide association (GWA) studies has identified 180 loci that influence adult height. However, each GWA locus typically comprises a set of contiguous genes, only one of which presumably modulates height. We reasoned that many of the causative genes within these loci influence height because they are expressed in and function in the growth plate, a cartilaginous structure that causes bone elongation and thus determines stature. Therefore, we used expression microarray studies of mouse and rat growth plate, human disease databases and a mouse knockout phenotype database to identify genes within the GWAS loci that are likely required for normal growth plate function. Each of these approaches identified significantly more genes within the GWA height loci than at random genomic locations (P < 0.0001 each), supporting the validity of the approach. The combined analysis strongly implicates 78 genes in growth plate function, including multiple genes that participate in PTHrP-IHH, BMP and CNP signaling, and many genes that have not previously been implicated in the growth plate. Thus, this analysis reveals a large number of novel genes that regulate human growth plate chondrogenesis and thereby contribute to the normal variations in human adult height. The analytic approach developed for this study may be applied to GWA studies for other common polygenic traits and diseases, thus providing a new general strategy to identify causative genes within GWA loci and to translate genetic associations into mechanistic biological insights.


Subject(s)
Body Height/genetics , Gene Expression Profiling , Genome-Wide Association Study , Growth Plate/metabolism , Animals , Computational Biology/methods , Genomics , Growth Plate/growth & development , Humans , Male , Mice , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Reproducibility of Results
13.
Nat Genet ; 44(9): 1015-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22902787

ABSTRACT

Strong signatures of positive selection at newly arising genetic variants are well documented in humans(1-8), but this form of selection may not be widespread in recent human evolution(9). Because many human traits are highly polygenic and partly determined by common, ancient genetic variation, an alternative model for rapid genetic adaptation has been proposed: weak selection acting on many pre-existing (standing) genetic variants, or polygenic adaptation(10-12). By studying height, a classic polygenic trait, we demonstrate the first human signature of widespread selection on standing variation. We show that frequencies of alleles associated with increased height, both at known loci and genome wide, are systematically elevated in Northern Europeans compared with Southern Europeans (P < 4.3 × 10(-4)). This pattern mirrors intra-European height differences and is not confounded by ancestry or other ascertainment biases. The systematic frequency differences are consistent with the presence of widespread weak selection (selection coefficients ∼10(-3)-10(-5) per allele) rather than genetic drift alone (P < 10(-15)).


Subject(s)
Body Height/genetics , Genetic Variation/physiology , Polymorphism, Single Nucleotide , Selection, Genetic/physiology , White People/genetics , Adult , Body Height/ethnology , Cohort Studies , Europe/epidemiology , Female , Gene Frequency , Genetics, Population , Genome-Wide Association Study , Humans , Likelihood Functions , Male , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/physiology , White People/statistics & numerical data
14.
PLoS Genet ; 7(10): e1002298, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21998595

ABSTRACT

Adult height is a classic polygenic trait of high heritability (h(2) approximately 0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain approximately10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10(-12) and 2p14-rs4315565, P = 1.2×10(-8)). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10(-4) for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits.


Subject(s)
Black or African American/genetics , Body Height/genetics , Adult , Aged , Aged, 80 and over , Chromosome Mapping , Female , Gene Frequency , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , White People/genetics
15.
Am J Hum Genet ; 89(3): 368-81, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21907010

ABSTRACT

The study of recent natural selection in human populations has important applications to human history and medicine. Positive natural selection drives the increase in beneficial alleles and plays a role in explaining diversity across human populations. By discovering traits subject to positive selection, we can better understand the population level response to environmental pressures including infectious disease. Our study examines unusual population differentiation between three large data sets to detect natural selection. The populations examined, African Americans, Nigerians, and Gambians, are genetically close to one another (F(ST) < 0.01 for all pairs), allowing us to detect selection even with moderate changes in allele frequency. We also develop a tree-based method to pinpoint the population in which selection occurred, incorporating information across populations. Our genome-wide significant results corroborate loci previously reported to be under selection in Africans including HBB and CD36. At the HLA locus on chromosome 6, results suggest the existence of multiple, independent targets of population-specific selective pressure. In addition, we report a genome-wide significant (p = 1.36 × 10(-11)) signal of selection in the prostate stem cell antigen (PSCA) gene. The most significantly differentiated marker in our analysis, rs2920283, is highly differentiated in both Africa and East Asia and has prior genome-wide significant associations to bladder and gastric cancers.


Subject(s)
Black People/genetics , Black or African American/genetics , Genetic Variation , Genetics, Population , Genome, Human/genetics , Selection, Genetic , Antigens, Neoplasm/genetics , CD36 Antigens/genetics , GPI-Linked Proteins/genetics , Gambia , Gene Frequency , Genotype , HLA Antigens/genetics , Humans , Models, Genetic , Neoplasm Proteins/genetics , Nigeria , United States
16.
PLoS Genet ; 7(6): e1002108, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21738479

ABSTRACT

Total white blood cell (WBC) and neutrophil counts are lower among individuals of African descent due to the common African-derived "null" variant of the Duffy Antigen Receptor for Chemokines (DARC) gene. Additional common genetic polymorphisms were recently associated with total WBC and WBC sub-type levels in European and Japanese populations. No additional loci that account for WBC variability have been identified in African Americans. In order to address this, we performed a large genome-wide association study (GWAS) of total WBC and cell subtype counts in 16,388 African-American participants from 7 population-based cohorts available in the Continental Origins and Genetic Epidemiology Network. In addition to the DARC locus on chromosome 1q23, we identified two other regions (chromosomes 4q13 and 16q22) associated with WBC in African Americans (P<2.5×10(-8)). The lead SNP (rs9131) on chromosome 4q13 is located in the CXCL2 gene, which encodes a chemotactic cytokine for polymorphonuclear leukocytes. Independent evidence of the novel CXCL2 association with WBC was present in 3,551 Hispanic Americans, 14,767 Japanese, and 19,509 European Americans. The index SNP (rs12149261) on chromosome 16q22 associated with WBC count is located in a large inter-chromosomal segmental duplication encompassing part of the hydrocephalus inducing homolog (HYDIN) gene. We demonstrate that the chromosome 16q22 association finding is most likely due to a genotyping artifact as a consequence of sequence similarity between duplicated regions on chromosomes 16q22 and 1q21. Among the WBC loci recently identified in European or Japanese populations, replication was observed in our African-American meta-analysis for rs445 of CDK6 on chromosome 7q21 and rs4065321 of PSMD3-CSF3 region on chromosome 17q21. In summary, the CXCL2, CDK6, and PSMD3-CSF3 regions are associated with WBC count in African American and other populations. We also demonstrate that large inter-chromosomal duplications can result in false positive associations in GWAS.


Subject(s)
Black or African American/genetics , Genome-Wide Association Study , Leukocyte Count , Molecular Epidemiology , Artifacts , Asian People/genetics , Chemokine CXCL2/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 4/genetics , DNA Replication/genetics , Duffy Blood-Group System/genetics , Genetic Loci/genetics , Humans , Microfilament Proteins/genetics , Phenotype , Polymorphism, Single Nucleotide , Receptors, Cell Surface/genetics , Reproducibility of Results , White People/genetics
17.
Nature ; 476(7359): 170-5, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21775986

ABSTRACT

Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P value < 10(-245)). We identify a 17-base-pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of PRDM9 alleles common in West Africans and rare in Europeans. Sites of this motif are predicted to be risk loci for disease-causing genomic rearrangements in individuals carrying these alleles. More generally, this map provides a resource for research in human genetic variation and evolution.


Subject(s)
Black or African American/genetics , Crossing Over, Genetic/genetics , Genome, Human/genetics , Africa, Western/ethnology , Alleles , Amino Acid Motifs , Base Sequence , Chromosome Mapping , Europe/ethnology , Evolution, Molecular , Female , Gene Frequency , Genetics, Population , Genomics , Haplotypes/genetics , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Male , Molecular Sequence Data , Pedigree , Polymorphism, Single Nucleotide/genetics , Probability , White People/genetics
18.
PLoS Genet ; 7(4): e1001371, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21541012

ABSTRACT

While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.


Subject(s)
Black or African American/genetics , Breast Neoplasms/genetics , Genome, Human , Genome-Wide Association Study/methods , Receptor, Fibroblast Growth Factor, Type 2/genetics , Black or African American/statistics & numerical data , Algorithms , Chromosome Mapping , Coronary Disease/genetics , Diabetes Mellitus, Type 2/genetics , Female , Gene Frequency , Genetic Variation , Genetics, Population/statistics & numerical data , Genome-Wide Association Study/statistics & numerical data , Genotype , Humans , Linkage Disequilibrium , Male , Odds Ratio , Phenotype , Polymorphism, Single Nucleotide , Principal Component Analysis , Software
19.
PLoS Genet ; 7(3): e1001324, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21423719

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.


Subject(s)
Fatty Liver/genetics , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Aged, 80 and over , Blood Glucose/analysis , Case-Control Studies , Chondroitin Sulfate Proteoglycans/genetics , Cohort Studies , Fatty Liver/diagnostic imaging , Fatty Liver/metabolism , Genome-Wide Association Study , Humans , Insulin/blood , Lectins, C-Type/genetics , Lipase/genetics , Male , Membrane Proteins/genetics , Middle Aged , Mutation, Missense , Nerve Tissue Proteins/genetics , Neurocan , Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Tomography, X-Ray Computed
20.
PLoS Genet ; 7(2): e1001300, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21347282

ABSTRACT

Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL- and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture- and SNP-association to maximize power for genetic discovery in even larger African-American consortia.


Subject(s)
Cholesterol, HDL/genetics , Cholesterol, LDL/genetics , Coronary Disease/genetics , Genome-Wide Association Study , Hypertension/genetics , Black or African American/genetics , Delta-5 Fatty Acid Desaturase , Genome, Human , Humans , Polymorphism, Single Nucleotide/genetics , Risk Factors , United States , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...