Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
World Neurosurg ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38719077

ABSTRACT

OBJECTIVE: Treatment of craniopharyngioma typically entails gross total resection (GTR) or subtotal resection with adjuvant radiation (STR-RT). We analyzed outcomes in adults with craniopharyngioma undergoing GTR versus STR-RT. METHODS: This retrospective study enrolled 115 patients with craniopharyngioma in 5 institutions. Patients with STR received postoperative RT with stereotactic radiosurgery or fractionated radiation therapy per institutional preference and ability to spare optic structures. RESULTS: Median age was 44 years (range, 19-79 years). GTR was performed in 34 patients and STR-RT was performed in 81 patients with median follow-up of 78.9 months (range, 1-268 months). For GTR, local control was 90.5% at 2 years, 87.2% at 3 years, and 71.9% at 5 years. For STR-RT, local control was 93.6% at 2 years, 90.3% at 3 years, and 88.4% at 5 years. At 5 years following resection, there was no difference in local control (P = 0.08). Differences in rates of visual deterioration or panhypopituitarism were not observed between GTR and STR-RT groups. There was no difference in local control in adamantinomatous and papillary craniopharyngioma regardless of treatment. Additionally, worse local control was found in patients receiving STR-RT who were underdosed with fractionated radiation therapy (P = 0.03) or stereotactic radiosurgery (P = 0.04). CONCLUSIONS: Good long-term control was achieved in adults with craniopharyngioma who underwent STR-RT or GTR with no significant difference in local control. First-line treatment for craniopharyngioma should continue to be maximal safe resection followed by RT as needed to balance optimal local control with long-term morbidity.

2.
Adv Radiat Oncol ; 9(7): 101509, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38799108

ABSTRACT

Background: Current standard of care treatment for patients with ≥15 brain metastases (BM) is whole brain radiation therapy (WBRT), despite poor neurocognitive outcomes. We analyzed our institutional experience of treating these patients with stereotactic radiosurgery (SRS), with the aim of evaluating safety, cognitive outcomes, and survival metrics. Methods: Patients who received SRS for ≥15 BMs in 1 to 5 fractions from 2014 to 2022 were included. Cognitive outcomes were objectively evaluated using serial Patient-Reported Outcome Measurement Information System (PROMIS) scores. The Kaplan-Meier method was used for survival analysis and log-rank test for intergroup comparisons. Results: Overall, 118 patients underwent 124 courses of LINAC-based SRS. The median number of lesions treated per course was 20 (range, 15-94). Most patients received fractionated SRS to a dose of 24 Gy in 3 fractions (81.5%). At the time of SRS, 19.4% patients had received prior WBRT, and 24.2% had received prior SRS. The rate of any grade radiation necrosis (RN) and grade ≥3 RN were 15.3% and 3.2%, respectively. When evaluating longitudinal PROMIS score trends, 25 of 31 patients had a stable/improved PROMIS score. Patients who did not receive prior brain RT had a longer median survival (7.4 months vs 4.6 months, P = .034). The 12m local control was 97.6%, and the cumulative incidence of distant intracranial failure, with death as a competing event, was 46% (95% CI, 36%, 55%). One year freedom from neurologic death, leptomeningeal disease, and salvage WBRT were 89%, 94.6%, and 84%, respectively. Conclusion: We present here one of the largest studies evaluating SRS for patients with ≥15 BMs. SRS was safe, had favorable cognitive outcomes, and had comparable survival outcomes to contemporary studies evaluating WBRT in this population. Treatment-naïve patients had a median survival of >6 months, long enough to benefit from cognitive sparing with SRS. Our study supports randomized studies comparing SRS and hippocampal avoidance WBRT approaches for these patients.

3.
Article in English | MEDLINE | ID: mdl-38604734

ABSTRACT

BACKGROUND AND PURPOSE: WHO grade 3 meningiomas are rare and poorly understood and have a higher propensity for recurrence, metastasis, and worsened clinical outcomes compared with lower-grade meningiomas. The purpose of our study was to prospectively evaluate the molecular profile, PET characteristics, and outcomes of patients with World Health Organization grade 3 meningiomas who were imaged with gallium 68 (68Ga) DOTATATE PET/MR imaging. MATERIALS AND METHODS: Patients with World Health Organization grade 3 meningiomas enrolled in our prospective observational cohort evaluating the utility of (68Ga) DOTATATE PET/MR imaging in somatostatin receptor positive brain tumors were included. We stratified patients by de novo-versus-secondary-progressive status and evaluated the differences in the PET standard uptake value, molecular profiles, and clinical outcomes. RESULTS: Patients met the inclusion criteria (secondary-progressive: 7/14; de novo: 7/14). The secondary-progressive cohort had a significantly higher per-patient number of surgeries (4.1 versus 1.6; P = .011) and trended toward a higher number of radiation therapy courses (2.4 versus 1.6; P = .23) and cumulative radiation therapy doses (106Gy versus 68.3Gy; P = .31). The secondary-progressive cohort had a significantly lower progression-free survival compared with the de novo cohort (4.8 versus 37.7 months; P = .004). Secondary-progressive tumors had distinct molecular pathology profiles with higher numbers of mutations (3.5 versus 1.2; P = .024). Secondary-progressive tumors demonstrated higher PET standard uptake values (17.1 versus 12.4; P = .0021). CONCLUSIONS: Our study confirms prior work illustrating distinct clinical outcomes in secondary-progressive and de novo World Health Organization grade 3 meningiomas. Furthermore, our findings support (68Ga) DOTATATE PET/MR imaging as a useful management strategy in World Health Organization grade 3 meningiomas and provide insight into meningioma biology, as well as clinical management implications.

4.
Article in English | MEDLINE | ID: mdl-38641234

ABSTRACT

PURPOSE: The role of stereotactic radiosurgery (SRS) in the management of grade 2 and 3 meningiomas is not well elucidated. Unfortunately, local recurrence rates are high, and guidelines for management of recurrent disease are lacking. To address this knowledge gap, we conducted STORM (Salvage Stereotactic Radiosurgery for Recurrent WHO Grade 2 and 3 Meningiomas), a multicenter retrospective cohort study of patients treated with primary SRS for recurrent grade 2 and 3 meningiomas. METHODS AND MATERIALS: Data on patients with recurrent grade 2 and 3 meningioma treated with SRS at first recurrence were retrospectively collected from 8 academic centers in the United States. Patients with multiple lesions at the time of initial diagnosis or more than 2 lesions at the time of first recurrence were excluded from this analysis. Patient demographics and treatment parameters were extracted at time of diagnosis, first recurrence, and second recurrence. Oncologic outcomes, including progression-free survival (PFS) and overall survival, as well as toxicity outcomes, were reported at the patient level. RESULTS: From 2000 to 2022, 108 patients were identified (94% grade 2, 6.0% grade 3). A total of 106 patients (98%) had upfront surgical resection (60% gross-total resection) with 18% receiving adjuvant radiation therapy (RT). Median time to first progression was 2.5 years (IQR, 1.34-4.30). At first recurrence, patients were treated with single or fractionated SRS to a median marginal dose of 16 Gy to a maximum of 2 lesions (87% received single-fraction SRS). The median follow-up time after SRS was 2.6 years. The 1-, 2-, and 3-year PFS was 90%, 75%, and 57%, respectively, after treatment with SRS. The 1-, 2-, and 3-year overall survival was 97%, 94%, and 92%, respectively. In the multivariable analysis, grade 3 disease (HR, 6.80; 95% CI, 1.61-28.6), male gender (HR, 3.48; 95% CI, 1.47-8.26), and receipt of prior RT (HR, 2.69; 95% CI, 1.23-5.86) were associated with worse PFS. SRS dose and tumor volume were not correlated with progression. Treatment was well tolerated, with a 3.0% incidence of grade 2+ radiation necrosis. CONCLUSIONS: This is the largest multicenter study to evaluate salvage SRS in recurrent grade 2 and 3 meningiomas. In this select cohort of patients with primarily grade 2 meningioma with a potentially more favorable natural history of delayed, localized first recurrence amenable to salvage SRS, local control rates and toxicity profiles were favorable, warranting further prospective validation.

5.
Article in English | MEDLINE | ID: mdl-38684319

ABSTRACT

BACKGROUND: Understanding sex-based differences in glioblastoma patients is necessary for accurate personalized treatment planning to improve patient outcomes. PURPOSE: To investigate sex-specific differences in molecular, clinical and radiological tumor parameters, as well as survival outcomes in glioblastoma, isocitrate dehydrogenase-1 wildtype (IDH1-WT), grade 4 patients. METHODS: Retrospective data of 1832 glioblastoma, IDH1-WT patients with comprehensive information on tumor parameters was acquired from the Radiomics Signatures for Precision Oncology in Glioblastoma (ReSPOND) consortium. Data imputation was performed for missing values. Sex-based differences in tumor parameters, such as, age, molecular parameters, pre-operative KPS score, tumor volumes, epicenter and laterality were assessed through non-parametric tests. Spatial atlases were generated using pre-operative MRI maps to visualize tumor characteristics. Survival time analysis was performed through log-rank tests and Cox proportional hazard analyses. RESULTS: GBM was diagnosed at a median age of 64 years in females compared to 61.9 years in males (FDR = 0.003). Males had a higher Karnofsky Performance Score (above 80) as compared to females (60.4% females Vs 69.7% males, FDR = 0.044). Females had lower tumor volumes in enhancing (16.7 cm3 Vs. 20.6 cm3 in males, FDR = 0.001), necrotic core (6.18 cm3 Vs. 7.76 cm3 in males, FDR = 0.001) and edema regions (46.9 cm3 Vs. 59.2 cm3 in males, FDR = 0.0001). Right temporal region was the most common tumor epicenter in the overall population. Right as well as left temporal lobes were more frequently involved in males. There were no significant differences in survival outcomes and mortality ratios. Higher age, unmethylated O6-methylguanine-DNAmethyltransferase (MGMT) promoter and undergoing subtotal resection increased the mortality risk in both males and females. CONCLUSIONS: Our study demonstrates significant sex-based differences in clinical and radiological tumor parameters of glioblastoma, IDH1-WT, grade 4 patients. Sex is not an independent prognostic factor for survival outcomes and the tumor parameters influencing patient outcomes are identical for males and females. ABBREVIATIONS: IDH1-WT = isocitrate dehydrogenase-1 wildtype; MGMTp = O6-methylguanine-DNA-methyltransferase promoter; KPS = Karnofsky performance score; EOR = extent of resection; WHO = world health organization; FDR = false discovery rate.

6.
Neuro Oncol ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38553990

ABSTRACT

BACKGROUND: Our purpose was to determine the utility of [68Ga]-DOTATATE PET/MRI in meningioma response assessment following radiosurgery. METHODS: Patients with meningioma prospectively underwent postoperative DOTATATE PET/MRI. Co-registered PET and gadolinium-enhanced T1-weighted MRI were employed for radiosurgery planning. Follow-up DOTATATE PET/MRI was performed at 6-12 months post radiosurgery. Maximum absolute standardized uptake value (SUV) and SUV ratio (SUVRSSS) referencing superior sagittal sinus (SSS) blood pool were obtained. Size change was determined by Response Assessment in Neuro-Oncology (RANO) criteria. Association of SUVRSSS change magnitude and PFS was evaluated using Cox regression. RESULTS: 27 patients with 64 tumors (26% WHO-1, 41% WHO-2, 26% WHO-3, 7% WHO-unknown) were prospectively followed post stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT) (mean dose: 30 Gy, modal dose 35 Gy, mean of 5 fractions). Post-irradiation SUV and SUVRSSS decreased by 37.4% and 44.4%, respectively (p < 0.0001). Size product decreased by 8.9%, thus failing to reach the 25% significance threshold as determined by RANO guidelines. Mean follow-up time was 26 months (range: 6-44). Overall mean PFS was 83% and 100%/100%/54% in WHO-1/-2/-3 subcohorts, respectively, at 34 months. At maximum follow-up (42-44 months), PFS was 100%/83%/54% in WHO-1/-2/-3 subcohorts, respectively. Cox regression analyses revealed a hazard ratio of 0.48 for 10-unit reduction in SUVRSSS in the SRS cohort. CONCLUSIONS: DOTATATE PET SUV and SUVRSSS demonstrated marked, significant decrease post radiosurgery. Lesion size decrease was statistically significant, however it was not clinically significant by RANO criteria. DOTATATE PET/MR thus represents a promising imaging biomarker for response assessment in meningiomas treated with radiosurgery.

7.
Neuro Oncol ; 26(12 Suppl 2): S46-S55, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38437668

ABSTRACT

The role of radiation therapy in the management of brain metastasis is evolving. Advancements in machine learning techniques have improved our ability to both detect brain metastasis and our ability to contour substructures of the brain as critical organs at risk. Advanced imaging with PET tracers and magnetic resonance imaging-based artificial intelligence models can now predict tumor control and differentiate tumor progression from radiation necrosis. These advancements will help to optimize dose and fractionation for each patient's lesion based on tumor size, histology, systemic therapy, medical comorbidities/patient genetics, and tumor molecular features. This review will discuss the current state of brain directed radiation for brain metastasis. We will also discuss future directions to improve the precision of stereotactic radiosurgery and optimize whole brain radiation techniques to improve local tumor control and prevent cognitive decline without forming necrosis.


Subject(s)
Brain Neoplasms , Cognitive Dysfunction , Humans , Artificial Intelligence , Brain Neoplasms/radiotherapy , Brain , Necrosis
8.
Neurosurgery ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38511946

ABSTRACT

Stereotactic radiosurgery (SRS) is an important weapon in the management of brain metastases. Single-fraction SRS is associated with local control rates ranging from approximately 70% to 100%, which are largely dependent on lesion and postoperative cavity size. The rates of local control and improved neurocognitive outcomes compared with conventional whole-brain radiation therapy have led to increased adoption of SRS in these settings. However, when treating larger targets and/or targets located in eloquent locations, the risk of normal tissue toxicity and adverse radiation effects within healthy brain tissue becomes significantly higher. Thus, hypofractionated SRS has become a widely adopted approach, which allows for the delivery of ablative doses of radiation while also minimizing the risk of toxicity. This approach has been studied in multiple retrospective reports in both the postoperative and intact settings. While there are no reported randomized data to date, there are trials underway evaluating this paradigm. In this article, we review the role of hypofractionated SRS in the management of brain metastases and emerging data that will serve to validate this treatment approach. Pertinent articles and references were obtained from a comprehensive search of PubMed/MEDLINE and clinicaltrials.gov.

9.
J Neurosurg ; : 1-8, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518285

ABSTRACT

OBJECTIVE: Stereotactic radiosurgery (SRS) is used for the treatment of residual/recurrent nonfunctional pituitary adenoma (NFPA). The aim of this study was to evaluate the factors related to long-term tumor control and delayed endocrinopathies following SRS. METHODS: This retrospective, multicenter study included patients with recurrent/residual NFPA treated with single-fraction SRS; they were then divided into two arms. The first arm included patients with at least 5 years of radiographic follow-up and all patients with local tumor progression. The second arm included patients with at least 5 years of endocrinological follow-up and all patients who developed endocrinopathy. Study endpoints were tumor control and new or worsening hypopituitarism after SRS and were analyzed using Cox regression and Kaplan-Meier methodology. RESULTS: There were 360 patients in the tumor control arm (median age 52.7 [IQR 42.9-61] years, 193 [53.6%] males) and 351 patients in the hypopituitarism arm (median age 52.5 [IQR 43-61] years, 186 [53.0%] males). The median follow-up in the tumor control evaluation group was 7.95 (IQR 5.7-10.5) years. Tumor control rates at 5, 8, 10, and 15 years were 93% (95% CI 90%-95%), 87% (95% CI 83%-91%), 86% (95% CI 82%-90%), and 69% (95% CI 59%-81%), respectively. The median follow-up in the endocrinopathy evaluation group was 8 (IQR 5.9-10.7) years. Pituitary function preservation rates at 5, 8, 10, and 15 years were 83% (95% CI 80%-87%), 81% (95% CI 77%-85%), 78% (95% CI 74%-83%), and 71% (95% CI 63%-79%), respectively. A margin dose > 15 Gy (HR 0.8, 95% CI 0.7-0.9; p < 0.001) and a delay from last resection to SRS > 1 year (HR 0.9, 95% CI 0.7-0.9; p = 0.04) were significant factors related to tumor control in multivariable analysis. A maximum dose to the pituitary stalk ≤ 10 Gy (HR 1.1, 95% CI 1.09-1.2; p < 0.001) was associated with pituitary function preservation. New visual deficits after SRS occurred in 7 (1.94%) patients in the tumor control group and 8 (2.3%) patients in the endocrinopathy group. Other new cranial nerve deficits post-SRS occurred in 4 of 160 patients with data in the tumor control group and 3 of 140 patients with data in the endocrinopathy group. CONCLUSIONS: SRS affords favorable and durable tumor control for the vast majority of NFPAs. Post-SRS hypopituitarism occurs in a minority of patients, but this risk increases with time and warrants long-term follow-up.

10.
Neuro Oncol ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38459978

ABSTRACT

BACKGROUND: The American Radium Society (ARS) Central Nervous System (CNS) committee reviewed literature on epidermal growth factor receptor mutated (EGFRm) and ALK-fusion (ALK+) tyrosine kinase inhibitors (TKIs) for the treatment of brain metastases (BrMs) from non-small cell lung cancers (NSCLC) to generate appropriate use guidelines addressing use of TKIs in conjunction with or in lieu of radiotherapy (RT). METHODS: The panel developed three key questions to guide systematic review: can radiotherapy be deferred in patients receiving EGFR or ALK TKIs at 1) diagnosis or 2) recurrence? Should TKI be administered concurrently with RT (3)? Two literature searches were performed (May 2019 and December 2023). The panel developed 8 model cases and voted on treatment options using a 9-point scale, with 1-3, 4-6 and 7-9 corresponding to usually not appropriate, may be appropriate, and usually appropriate (respectively), per the UCLA/RAND Appropriateness Method. RESULTS: Consensus was achieved in only 4 treatment scenarios, all consistent with existing ARS-AUC guidelines for multiple BrM. The panel did not reach consensus that RT can be appropriately deferred in patients with BrM receiving CNS penetrant ALK or EGFR TKIs, though median scores indicated deferral may be appropriate under most circumstances. Whole brain RT with concurrent TKI generated broad disagreement except in cases with 2-4 BrM, where it was considered usually not appropriate. CONCLUSIONS: We identified no definitive studies dictating optimal sequencing of TKIs and RT for EGFRm and ALK+ BrM. Until such studies are completed, the committee hopes these cases guide decision-making in this complex clinical space.

11.
Adv Radiat Oncol ; 9(2): 101377, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38405313

ABSTRACT

Purpose: Leptomeningeal disease (LMD) is clinically detected in 5% to 10% of patients with solid tumors and is a source of substantial morbidity and mortality. Prognosis for this entity remains poor and treatments are palliative. Radiation therapy (RT) is an essential tool in the management of LMD, and a recent randomized trial demonstrated a survival benefit for proton craniospinal irradiation (CSI) in select patients. In the setting of this recent advance, we conducted a review of the role of RT in LMD from solid tumors to evaluate the evidence basis for RT recommendations. Methods and Materials: In November 2022, we conducted a comprehensive literature search in PubMed, as well as a review of ongoing clinical trials listed on ClinicalTrials.gov, to inform a discussion on the role of RT in solid tumor LMD. Because of the paucity of high-quality published evidence, discussion was informed more by expert consensus and opinion, including a review of societal guidelines, than evidence from clinical trials. Results: Only 1 prospective randomized trial has evaluated RT for LMD, demonstrating improved central nervous system progression-free survival for patients with breast and lung cancer treated with proton CSI compared with involved-field RT. Modern photon CSI techniques have improved upon historical rates of acute hematologic toxicity, but the overall benefit of this modality has not been prospectively evaluated. Multiple retrospective studies have explored the use of involved-field RT or the combination of RT with chemotherapy, but clear evidence of survival benefit is lacking. Conclusions: Optimal management of LMD with RT remains reliant upon expert opinion, with proton CSI indicated in patients with good performance status and extra-central nervous system disease that is either well-controlled or for which effective treatment options are available. Photon-based CSI traditionally has been associated with increased marrow and gastrointestinal toxicities, though intensity modulated RT/volumetric-modulated arc therapy based photon CSI may have reduced the toxicity profile. Further work is needed to understand the role of radioisotopes as well as combined modality treatment with intrathecal or central nervous system penetrating systemic therapies.

12.
Commun Med (Lond) ; 4(1): 27, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388667

ABSTRACT

BACKGROUND: Brain metastases (BM) affect clinical management and prognosis but limited resources exist to estimate BM risk in newly diagnosed cancer patients. Additionally, guidelines for brain MRI screening are limited. We aimed to develop and validate models to predict risk of BM at diagnosis for the most common cancer types that spread to the brain. METHODS: Breast cancer, melanoma, kidney cancer, colorectal cancer (CRC), small cell lung cancer (SCLC), and non-small cell lung cancer (NSCLC) data were extracted from the National Cancer Database to evaluate for the variables associated with the presence of BM at diagnosis. Multivariable logistic regression (LR) models were developed and performance was evaluated with Area Under the Receiver Operating Characteristic Curve (AUC) and random-split training and testing datasets. Nomograms and a Webtool were created for each cancer type. RESULTS: We identify 4,828,305 patients from 2010-2018 (2,095,339 breast cancer, 472,611 melanoma, 407,627 kidney cancer, 627,090 CRC, 164,864 SCLC, and 1,060,774 NSCLC). The proportion of patients with BM at diagnosis is 0.3%, 1.5%, 1.3%, 0.3%, 16.0%, and 10.3% for breast cancer, melanoma, kidney cancer, CRC, SCLC, and NSCLC, respectively. The average AUC over 100 random splitting for the LR models is 0.9534 for breast cancer, 0.9420 for melanoma, 0.8785 for CRC, 0.9054 for kidney cancer, 0.7759 for NSCLC, and 0.6180 for SCLC. CONCLUSIONS: We develop accurate models that predict the BM risk at diagnosis for multiple cancer types. The nomograms and Webtool may aid clinicians in considering brain MRI at the time of initial cancer diagnosis.


When patients are diagnosed with cancer, it is unknown which patients have a significant risk of cancer spread to the brain. Cancer spread to the brain is important to diagnose since it changes how patients are treated and affects their prognosis. This study used a large national database of patients diagnosed with cancer and studied the characteristics that were associated with cancer spread to the brain. The results can be used by doctors to assess the risk of cancer spread to the brain and determine which patients with cancer may benefit most from brain imaging.

13.
Adv Radiat Oncol ; 9(3): 101424, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379893

ABSTRACT

Introduction: Craniospinal irradiation (CSI) is indicated for adult patients diagnosed with leptomeningeal disease (LMD). Proton-based vertebral body sparing (VBS) CSI has been explored with pediatric patients to minimize hematologic toxicity; however, utilization of VBS in an adult population is limited. A recent phase II trial has shown efficacy of proton-based CSI to treat non-small cell lung and breast cancer with LMD. We hypothesize that VBS CSI using volumetric modulated arc therapy (VMAT) could also effectively reduce dose to vertebral bodies and surrounding organs at risk, minimizing toxicity for adult patients with LMD and comparing favorably to proton-based CSI. Methods and Materials: Consecutive patients with LMD received VMAT VBS CSI, 30 Gy in 10 fractions, as a part of a prospective registry. Full VMAT arcs for the brain fields matched to 2 spine isocenters for the upper and lower spine were created using limited posterior arcs. To further decrease the vertebral body dose, an avoid entry and exit contour was created. Acute toxicity data were collected using Common Terminology Criteria for Adverse Events v5. Results: Ten adult patients were treated in this cohort. One patient experienced grade 2 neutropenia with the remaining 9 experiencing grade 1 hematologic toxicity. Three patients experienced grade 2 gastrointestinal toxicity with the remaining 7 experiencing grade 1 nausea. No patient experienced grade 3+ toxicities in this cohort. One patient experienced a 5-day delay in systemic therapy initiation due to neutropenia; otherwise, all patients planned for systemic therapy started without delay. Conclusions: In this study, VMAT VBS CSI led to acceptable toxicity compared with patients treated with proton CSI on a phase 2 clinical trial. Given its promising early results, future prospective evaluation of the technique is warranted.

14.
Adv Radiat Oncol ; 9(2): 101337, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38405310

ABSTRACT

Purpose: Recent advances to preserve neurocognitive function in patients treated for brain metastases include stereotactic radiosurgery, hippocampal avoidance whole brain radiation therapy (WBRT), and memantine administration. The hippocampus, corpus callosum, fornix, and amygdala are key neurocognitive substructures with a low propensity for brain metastases. Herein, we report our preliminary experience using a "memory-avoidance" WBRT (MA-WBRT) approach that spares these substructures for patients with >15 brain metastases. Methods and Materials: Ten consecutive patients treated with MA-WBRT on a phase 2 clinical trial were reviewed. In each patient, the hippocampi, amygdalae, corpus callosum, and fornix were contoured. Patients were not eligible for MA-WBRT if they had metastases in these substructures. A memory-avoidance region was created using a 5-mm volumetric expansion around these substructures. Hotspots were avoided in the hypothalamus and pituitary gland. Coverage of brain metastases was prioritized over memory avoidance dose constraints. Dose constraints for these avoidance structures included a D100% ≤ 9 Gy and D0.03 cm3 ≤ 16 Gy (variation acceptable to 20 Gy). LINAC-based volumetric modulated arc therapy plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the memory avoidance structure volume was 37.1 cm3 (range, 25.2-44.6 cm3), occupying 2.5% of the entire whole brain target volume. All treatment plans met the D100% dose constraint, and 8 of 10 plans met the D0.03 cm3 constraint, with priority given to tumor coverage for the remaining 2 cases. Target coverage (D98% > 25 Gy) and homogeneity (D2% ≤ 37.5 Gy) were achieved for all plans. Conclusions: Modern volumetric modulated arc therapy techniques allow for sparing of the hippocampus, amygdala, corpus callosum, and fornix with good target coverage and homogeneity. After enrollment is completed, quality of life and cognitive data will be evaluated to assess the efficacy of MA-WBRT to mitigate declines in quality of life and cognition after whole brain radiation.

15.
Cancers (Basel) ; 16(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398079

ABSTRACT

BACKGROUND AND PURPOSE: A bolus is required when treating scalp lesions with photon radiation therapy. Traditional bolus materials face several issues, including air gaps and setup difficulty due to irregular, convex scalp geometry. A 3D-milled bolus is custom-formed to match individual patient anatomy, allowing improved dose coverage and homogeneity. Here, we describe the creation process of a 3D-milled bolus and report the outcomes for patients with scalp malignancies treated with Volumetric Modulated Arc Therapy (VMAT) utilizing a 3D-milled bolus. MATERIALS AND METHODS: Twenty-two patients treated from 2016 to 2022 using a 3D-milled bolus and VMAT were included. Histologies included squamous cell carcinoma (n = 14, 64%) and angiosarcoma (n = 8, 36%). A total of 7 (32%) patients were treated in the intact and 15 (68%) in the postoperative setting. The median prescription dose was 66.0 Gy (range: 60.0-69.96). RESULTS: The target included the entire scalp for 8 (36%) patients; in the remaining 14 (64%), the median ratio of planning target volume to scalp volume was 35% (range: 25-90%). The median dose homogeneity index was 1.07 (range: 1.03-1.15). Six (27%) patients experienced acute grade 3 dermatitis and one (5%) patient experienced late grade 3 skin ulceration. With a median follow-up of 21.4 months (range: 4.0-75.4), the 18-month rates of locoregional control and overall survival were 75% and 79%, respectively. CONCLUSIONS: To our knowledge, this is the first study to report the clinical outcomes for patients with scalp malignancies treated with the combination of VMAT and a 3D-milled bolus. This technique resulted in favorable clinical outcomes and an acceptable toxicity profile in comparison with historic controls and warrants further investigation in a larger prospective study.

16.
JAMA Oncol ; 10(3): 335-341, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38175627

ABSTRACT

Importance: The potential benefit of combining intracranial effective systemic therapy with radiotherapy for patients with breast cancer with brain metastases remains unclear. Objective: To assess the activity and safety of combining radiotherapy with pyrotinib and capecitabine in patients with ERBB2-positive breast cancer and brain metastases. Design, Setting, and Participants: This was a single-arm, single-center, phase 2 nonrandomized clinical trial with a safety run-in phase. Between January 2020 and August 2022, patients with ERBB2-positive breast cancer and brain metastases were enrolled. The data cutoff date was February 1, 2023. Interventions: Patients received either fractionated stereotactic radiotherapy or whole-brain radiotherapy. Treatment with pyrotinib (400 mg, once daily) and capecitabine (1000 mg/m2, twice daily, on days 1-14 of each 21-day cycle) was initiated from the first day of radiotherapy to the seventh day after the completion of radiotherapy and continued until disease progression or unacceptable toxic effects. Main Outcomes and Measures: The primary end point was 1-year central nervous system (CNS) progression-free survival (PFS) rate. Secondary end points included CNS objective response rate (ORR), PFS, overall survival (OS), safety, and changes in neurocognitive function. Results: A total of 40 female patients (median age, 50.5 years [IQR, 46-59 years]) were enrolled and received treatment, including 3 patients in safety run-in phase. With a median follow-up of 17.3 months (IQR, 10.3-26.9), the 1-year CNS PFS rate was 74.9% (95% CI, 61.9%-90.7%), and the median CNS PFS was 18.0 months (95% CI, 15.5 to not reached). The 1-year PFS rate was 66.9% (95% CI, 53.1%-84.2%), and the median PFS was 17.6 months (95% CI, 12.8-34.1). The CNS objective response rate was 85% (34 of 40). Median overall survival was not reached. The most common grade 3 or 4 treatment-related adverse event was diarrhea (7.5%). Asymptomatic radiation necrosis was identified in 4 of 67 lesions (6.0%) treated with fractionated stereotactic radiotherapy. Most patients maintained neurocognitive function, as evaluated by the Mini-Mental State Examination at different points. Conclusions and Relevance: The results of this trial suggest that radiotherapy combined with pyrotinib and capecitabine is associated with long intracranial survival benefit in patients with ERBB2-positive advanced breast cancer and brain metastases with an acceptable safety profile. This combination deserves further validation. Trial Registration: ClinicalTrials.gov Identifier: NCT04582968.


Subject(s)
Acrylamides , Aminoquinolines , Brain Neoplasms , Breast Neoplasms , Female , Humans , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Brain/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Capecitabine/adverse effects , Receptor, ErbB-2/metabolism
19.
Article in English | MEDLINE | ID: mdl-38220068

ABSTRACT

There are limited data available on clinical outcomes after stereotactic body radiation therapy (SBRT) for nonspinal bone metastases. We performed a systematic review and meta-analysis to characterize local control (LC), overall survival (OS), pain response rates, and toxicity after SBRT. The primary outcomes were 1-year LC, incidence of acute and late grade 3 to 5 toxicities, and overall pain response rate at 3 months. The secondary outcome was 1-year OS. The Newcastle-Ottawa scale was used for assessment of study bias, with a median score of 5 for included studies (range, 4-8). Weighted random-effects meta-analyses were conducted to estimate effect sizes. We identified 528 patients with 597 nonspinal bone lesions in 9 studies (1 prospective study and 8 retrospective observational studies) treated with SBRT. The estimated 1-year LC rate was 94.6% (95% CI, 87.0%-99.0%). The estimated 3-month combined partial and complete pain response rate after SBRT was 87.7% (95% CI, 55.1%-100.0%). The estimated combined acute and late grade 3 to 5 toxicity rate was 0.5% (95% CI, 0%-5.0%), with an estimated pathologic fracture rate of 3.1% (95% CI, 0.2%-9.1%). The estimated 1-year OS rate was 71.0% (95% CI, 51.7%-87.0%). SBRT results in excellent LC and palliation of symptoms with minimal related toxicity. Prospective investigations are warranted to further characterize long-term outcomes of SBRT for patients with nonspinal bone metastases.

20.
Int J Radiat Oncol Biol Phys ; 118(5): 1391-1401, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37506981

ABSTRACT

PURPOSE: Lapatinib plus whole brain radiation therapy (WBRT) or stereotactic radiosurgery (SRS) was hypothesized to improve the 12-week intracranial complete response (CR) rate compared with either option of radiation therapy (RT) alone for patients with brain metastases (BM) from human epidermal growth factor receptor 2-positive (HER2+) breast cancer. METHODS AND MATERIALS: This study included patients with HER2+ breast cancer with ≥1 measurable, unirradiated BM. Patients were randomized to WBRT (37.5 Gy/3 wk)/SRS (size-based dosing) ± concurrent lapatinib (1000 mg daily for 6 weeks). Secondary endpoints included objective response rate (ORR), lesion-specific response, central nervous system progression-free survival, and overall survival. RESULTS: From July 2012 to September 2019, 143 patients were randomized, with 116 analyzable for the primary endpoint. RT + lapatinib did not improve 12-week CR (0% vs 6% for RT alone, 1-sided P = .97), or ORR at 12 weeks. At 4 weeks, RT + lapatinib showed higher ORR (55% vs 42%). Higher graded prognostic assessment and ≤10 lesions were associated with higher 12-week ORR. Grade 3 and 4 adverse event rates were 8% and 0% for RT and 28% and 6% for RT + lapatinib. CONCLUSIONS: The addition of 6 weeks of concomitant lapatinib to WBRT/SRS did not improve the primary endpoint of 12-week CR rate or 12-week ORR. Adding lapatinib to WBRT/SRS showed improvement of 4-week ORR, suggesting a short-term benefit from concomitant therapy.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Radiosurgery , Humans , Female , Lapatinib , Breast Neoplasms/pathology , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Radiosurgery/methods , Brain/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...