Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 373: 114648, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38081352

ABSTRACT

Environmental enrichment (EE) facilitates motor and cognitive recovery after traumatic brain injury (TBI). Historically, EE has been provided immediately and continuously after TBI, but this paradigm does not model the clinic where rehabilitation is typically not initiated until after critical care. Yet, treating TBI early may facilitate recovery. Hence, we sought to provide amantadine (AMT) as a bridge therapy before commencing EE. It was hypothesized that bridging EE with AMT would augment motor and cognitive benefits. Anesthetized adult male rats received a cortical impact (2.8 mm deformation at 4 m/s) or sham surgery and then were housed in standard (STD) conditions where they received intraperitoneal AMT (10 mg/kg or 20 mg/kg) or saline vehicle (VEH; 1 mL/kg) beginning 24 h after surgery and once daily during the 6-day bridge phase or once daily for 19 days for the non-bridge groups (i.e., continuously STD-housed) to compare the effects of acute AMT plus EE vs. chronic AMT alone. Abbreviated EE, which was presented to closer emulate clinical rehabilitation (e.g., 6 h/day), began on day 7 for the AMT bridge and chronic EE groups. Motor (beam-walking) and cognition (acquisition of spatial learning and memory) were assessed on days 7-11 and 14-19, respectively. Cortical lesion volume and hippocampal cell survival were quantified on day 21. EE, whether provided in combination with VEH or AMT, and AMT (20 mg/kg) + STD, benefitted motor and cognition vs. the STD-housed VEH and AMT (10 mg/kg) groups (p < 0.05). The AMT (20 mg/kg) + EE group performed better than the VEH + EE, AMT (10 mg/kg) + EE, and AMT (20 mg/kg) + STD groups in the acquisition of spatial learning (p < 0.05) but did not differ in motor function (p > 0.05). All groups receiving EE exhibited decreased cortical lesion volumes and increased CA3 neuron survival relative to the STD-housed groups (p < 0.05) but did not differ from one another (p > 0.05). The added cognitive benefit achieved by bridging EE with AMT (20 mg/kg) supports the hypothesis that the temporal separation of combinational therapies is more effective after TBI.


Subject(s)
Brain Injuries, Traumatic , Psychomotor Performance , Rats , Male , Animals , Rats, Sprague-Dawley , Environment , Brain Injuries, Traumatic/drug therapy , Cognition , Amantadine/pharmacology , Amantadine/therapeutic use , Maze Learning/physiology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...